Skip to main content
Log in

Dynamic hydrothermal synthesis of Al-substituted 11 Å tobermorite from solid waste fly ash residue-extracted Al2O3

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Fly ash residue (hereafter, FAR) is the by-product of pulverized coal combustion fly ash-extracted Al2O3. It results in a hazardous industrial solid waste if it does not have appropriate treatment and utilization. Al-substituted 11 Å tobermorite is successfully synthesized from FAR/SiO2 mixture by dynamic hydrothermal treatment at 220 °C for 6 h. FAR and its hydrothermal reaction products are studied by chemical analysis, XRD, SEM, FTIR, and BET methods. The XRD results show that dicalcium silicate existing in FAR has been converted into tobermorite after the hydrothermal treatment. The main crystalline phases of product are Al-substituted 11 Å tobermorite and minor calcite. SEM results show that the hydrothermal products of the FAR/SiO2 mixture consist of many tiny needlelike and platy crystals which form micro-porous spherical particles, ranging in size from a few microns to dozens of microns, and have a specific surface area of 49.004 m2/g. The Al-substituted tobermorite-bearing products have a high performance of exclusion of Cr3+ from acidified aqueous media, and the adsorption efficiency of Cr3+ is 98 %. The exclusion reaction proceeds rapidly, reaching equilibria within 1 h. The results show that this product has a potential to be used in industrial processes for adsorption of heavy metal cations from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Yilmaz, N. Degirmenci, Waste Manag. 29, 1541 (2009)

    Article  CAS  Google Scholar 

  2. N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Waste Manag. 26, 260 (2006)

    Article  CAS  Google Scholar 

  3. X. Huang, D. Jiang, S. Tan, J. Eur. Ceram. Soc. 23, 123 (2003)

    Article  CAS  Google Scholar 

  4. J. Kikuma, M. Tsunashima, T. Ishikawa, S. Matsuno, A. Ogawa, K. Matsui, M. Sato, J. Solid State Chem. 184, 2066 (2011)

    Article  CAS  Google Scholar 

  5. S. Komarneni, J.S. Komarneni, B. Newalkar, S. Stout, Mater. Res. Bull. 37, 1025 (2002)

    Article  CAS  Google Scholar 

  6. H. Youssef, D. Ibrahim, S. Komarneni, K.J.D. Mackenzie, Ceram. Int. 36, 203 (2010)

    Article  CAS  Google Scholar 

  7. Z.-L. Wang, Z.-Z. Jing, W. Ke, L. Zhou, J.-M. Yu, Z.-S. Li, E.H. Ishida, Res. Chem. Intermed. 37, 219 (2011)

    Article  CAS  Google Scholar 

  8. C.A. Ríos, C.D. Williams, M.A. Fullen, Appl. Clay Sci. 43, 228 (2009)

    Article  Google Scholar 

  9. N.J. Coleman, D.S. Brassington, Mater. Res. Bull. 38, 485 (2003)

    Article  CAS  Google Scholar 

  10. N.J. Coleman, Mater. Res. Bull. 40, 2000 (2005)

    Article  CAS  Google Scholar 

  11. Z. Jing, F. Jin, N. Yamasaki, E.H. Ishida, Ind. Eng. Chem. Res. 46, 2657 (2007)

    Article  CAS  Google Scholar 

  12. C. Shan, Z. Jing, L. Pan, L. Zhou, X. Pan, L. Lu, Res. Chem. Intermed. 37, 551 (2011)

    Article  CAS  Google Scholar 

  13. J. Reinik, I. Heinmaa, J.-P. Mikkola, U. Kirso, Fuel 86, 669 (2007)

    Article  CAS  Google Scholar 

  14. N.J. Coleman, C.J. Trice, J.W. Nicholson, Int. J. Miner. Process. 93, 73 (2009)

    Article  CAS  Google Scholar 

  15. V.J. Inglezakis, H. Grigoropoulou, J. Hazard. Mater. B112, 37 (2004)

    Article  Google Scholar 

  16. D.I. Brandwein, G.T. Brookman, Environ. Prog. 1, 1 (1982)

    Article  CAS  Google Scholar 

  17. A. Nakahira, H. Naganuma, T. Kubo, Y. Yamasaki, J. Ceram. Soc. Jpn. 116(3), 500 (2008)

    Article  CAS  Google Scholar 

  18. H. Maeda, K. Abe, E.H. Ishida, J. Ceram. Soc. Jpn. 119(5), 375 (2011)

    Article  CAS  Google Scholar 

  19. J. Reinika et al., J. Hazard. Mater. 196, 180 (2011)

    Article  Google Scholar 

  20. W. Nocuń-Wczelik, Cem. Concr. Res. 29, 1759 (1999)

    Article  Google Scholar 

  21. P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong, J. Am. Ceram. Soc. 82(3), 742 (1999)

    Article  CAS  Google Scholar 

  22. N.Y. Mostafa, A.A. Shaltout, H. Omar, S.A. Abo-El-Enein, J. Alloys Compd. 467, 332 (2009)

    Article  CAS  Google Scholar 

  23. S. Komarneni, D.M. Roy, R. Roy, Cem. Concr. Res. 12, 773 (1982)

    Article  CAS  Google Scholar 

  24. E.I. Al-Wakeel, S.A. El-Korashy, S.A. El-Hemaly, M.A. Rizk, J. Mater. Res. 36, 2405 (2001)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Sciences Foundation of China (Grant No. 41072025) and the China Geological Survey (No. 1212011120312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinshan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, F., Wei, C., Xue, B. et al. Dynamic hydrothermal synthesis of Al-substituted 11 Å tobermorite from solid waste fly ash residue-extracted Al2O3 . Res Chem Intermed 39, 693–705 (2013). https://doi.org/10.1007/s11164-012-0590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0590-1

Keywords

Navigation