Skip to main content
Log in

Aqueous pathways for formation of zinc oxide particles in the presence of carboxymethyl inulin

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, zinc oxide (ZnO) crystals were obtained by a simple wet chemical method using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine as the starting materials in the presence of the water-soluble biopolymer carboxymethyl inulin (CMI). We investigated the effect of reaction temperature and CMI concentration on the morphology, surface area, particle size, and size distribution of zinc oxide. X-ray diffraction analysis showed the XRD patterns for all the samples were similar to that of ZnO with the wurtzite structure, irrespective of the geometric shape of the particle. The ZnO rod grows preferentially along the [001] direction in the absence of the CMI. The biopolymer affects the ZnO crystals in a concentration-dependent manner by altering the growth rate of the particles along the c-axis and a-axis. The vast majority of the crystals have a central grain boundary in the presence of CMI. The precipitate consisted of micrometer-sized hexagonally shaped bipyramidal ZnO crystals and nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Samarasekara, N. Yapa, N. Kumara, M. Perera, Bull. Mater. Sci. 30, 113 (2007)

    Article  CAS  Google Scholar 

  2. M. Ghosh, R. Bhattacharyya, A. Raychaudhuri, Bull. Mater. Sci. 31, 283 (2008)

    Article  CAS  Google Scholar 

  3. S. Fujihara, H. Naito, T. Kimura, Thin Solid Films 389, 227 (2001)

    Article  CAS  Google Scholar 

  4. A. Degen, M. Kosec, J. Eur. Ceram. Soc. 20, 667 (2000)

    Article  CAS  Google Scholar 

  5. J. Wrzesinski, D. Fröhlich, Solid State Commun. 105, 301 (1998)

    Article  CAS  Google Scholar 

  6. S. Kashyap, K. Chopra, B. Bhushan, Bull. Mater. Sci. 9, 169 (1987)

    Article  CAS  Google Scholar 

  7. K. Byrappa, A. Subramani, S. Ananda, K. Rai, R. Dinesh, M. Yoshimura, Bull. Mater. Sci. 29, 433 (2006)

    Article  CAS  Google Scholar 

  8. W.F. Elseviers, H. Verelst, Fuel 78, 601 (1999)

    Article  CAS  Google Scholar 

  9. F.A. Sigoli, M.R. Davolos, M. Jafelicci Jr., J. Alloy Compd. 262–263, 292 (1997)

    Article  Google Scholar 

  10. O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001)

    Article  CAS  Google Scholar 

  11. H. Akiyama, O. Yamasaki, H. Kanzaki, J. Tada, J. Arata, J. Dermatol. Sci. 17, 67 (1998)

    Article  CAS  Google Scholar 

  12. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002)

    Article  CAS  Google Scholar 

  13. S. Ohara, T. Mousavand, M. Umetsu, S. Takami, T. Adschiri, Y. Kuroki, M. Takata, Solid State Ionics 172, 261 (2004)

    Article  CAS  Google Scholar 

  14. W.-T. Chiou, W.-Y. Wu, J.-M. Ting, Diam. Relat. Mater. 12, 1841 (2003)

    Article  CAS  Google Scholar 

  15. M. Izaki, T. Omi, Appl. Phys. Lett. 68, 2439 (1996)

    Article  CAS  Google Scholar 

  16. J.E. Rodriguez-Paez, A.C. Caballero, M. Villegas, C. Moure, P. Duran, J.F. Fernandez, J. Eur. Ceram. Soc. 21, 925 (2001)

    Article  CAS  Google Scholar 

  17. S. Komarneni, M. Bruno, E. Mariani, Mater. Res. Bull. 35, 1843 (2000)

    Article  CAS  Google Scholar 

  18. C.-H. Lu, C.-H. Yeh, Ceram. Int. 26, 351 (2000)

    Article  CAS  Google Scholar 

  19. D. Chen, X. Jiao, G. Cheng, Solid State Commun. 113, 363 (1999)

    Article  CAS  Google Scholar 

  20. E. Reverchon, G. Della Porta, D. Sannino, P. Ciambelli, Powder Technol. 102, 127 (1999)

    Article  CAS  Google Scholar 

  21. C.-H. Lu, C.-H. Yeh, Mater. Lett. 33, 129 (1997)

    Article  CAS  Google Scholar 

  22. B.P. Lim, J. Wang, S.C. Ng, C.H. Chew, L.M. Gan, Ceram. Int. 24, 205 (1998)

    Article  CAS  Google Scholar 

  23. Q. Zhong, E. Matijevic, J. Mater. Chem. 6, 443 (1996)

    Article  CAS  Google Scholar 

  24. M. Öner, J. Norwig, W.H. Meyer, G. Wegner, Chem. Mater. 10, 460 (1998)

    Article  Google Scholar 

  25. A. Taubert, G. Glasser, D. Palms, Langmuir 18, 4488 (2002)

    Article  CAS  Google Scholar 

  26. A. Taubert, D. Palms, Ö. Weiss, M.-T. Piccini, D.N. Batchelder, Chem. Mater. 14, 2594 (2002)

    Article  CAS  Google Scholar 

  27. X. Liu, Z. Jin, S. Bu, J. Zhao, Z. Liu, J. Am. Ceram. Soc. 89, 1226 (2006)

    Article  CAS  Google Scholar 

  28. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  CAS  Google Scholar 

  29. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)

    Article  CAS  Google Scholar 

  30. J.M. Marentette, J. Norwig, E. Stöckelmann, W.H. Meyer, Adv. Mater. 9, 647 (1997)

    Article  CAS  Google Scholar 

  31. L. Qi, H. Cölfen, M. Antonietti, Chem. Mater. 12, 2392 (2000)

    Article  CAS  Google Scholar 

  32. P.G. Klepetsanis, P.G. Koutsoukos, J. Cryst. Growth 193, 156 (1998)

    Article  CAS  Google Scholar 

  33. E. Akyol, M. Öner, E. Barouda, K.D. Demadis, Cryst. Growth Des. 9, 5145 (2009)

    Article  CAS  Google Scholar 

  34. Ö. Dogan, M. Öner, Langmuir 22, 9671 (2006)

    Article  CAS  Google Scholar 

  35. S. Kırboga, M. Öner, Cryst. Growth Des. 9, 2159 (2009)

    Article  Google Scholar 

  36. G. Wegner, P. Baum, M. Müller, J. Norwig, K. Landfester, Macromol. Symp. 175, 349 (2001)

    Article  CAS  Google Scholar 

  37. A. Taubert, C. Kübel, D.C. Martin, J. Phys. Chem. B. 107, 2660 (2003)

    Article  CAS  Google Scholar 

  38. H. Cölfen, M. Antonietti, Langmuir 14, 582 (1998)

    Article  Google Scholar 

  39. H. Cölfen, Macromol. Rapid Commun. 22, 219 (2001)

    Article  Google Scholar 

  40. L. Qi, H. Cölfen, M. Antonietti, M. Li, J.D. Hopwood, A.J. Ashley, S. Mann, Chem. Eur. J. 7, 3526 (2001)

    Article  CAS  Google Scholar 

  41. A. Bigi, E. Boanini, G. Cojazzi, G. Falini, S. Panzavolta, Cryst. Growth Des. 1, 239 (2001)

    Article  CAS  Google Scholar 

  42. S. Kırboga, M. Öner, Colloid Surf B. 78, 357 (2010)

    Article  Google Scholar 

  43. R. Munoz-Espí, Y. Qi, I. Lieberwirth, C.M. Gomez, G. Wegner, Chem. Eur. J. 12, 118 (2006)

    Article  Google Scholar 

  44. F.R. Johannsen, Food Chem. Toxicol. 41, 49 (2003)

    Article  CAS  Google Scholar 

  45. D. Verraest, J. Peters, H. van Bekkum, G. van Rosmalen, J. Am. Oil Chem. Soc. 73, 55 (1996)

    Article  CAS  Google Scholar 

  46. B. Akin, M. Öner, Y. Bayram, K.D. Demadis, Cryst. Growth Des. 8, 1997 (2008)

    Article  CAS  Google Scholar 

  47. Ö. Dogan, M. Öner, Ö. Cinel, J. Ceram. Soc. Jpn. 118, 579 (2010)

    Article  CAS  Google Scholar 

  48. K.D. Demadis, E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, C. Mantzaridis, Desalination 213, 38 (2007)

    Article  CAS  Google Scholar 

  49. P.T. Anastas, J.C. Warner, Green chemistry: theory and practice (Oxford University Press, New York, 1998)

  50. K. Lu, J. Zhao, Chem. Eng. J. 160, 788 (2010)

    Article  CAS  Google Scholar 

  51. P.-Y. Wu, J. Pike, F. Zhang, S.-W. Chan, Int. J. Appl. Ceram. Tec. 3, 272 (2006)

    Article  CAS  Google Scholar 

  52. M. Wang, S.H. Hahn, J.S. Kim, J.S. Chung, E.J. Kim, K.-K. Koo, J. Cryst. Growth 310, 1213 (2008)

    Article  CAS  Google Scholar 

  53. S. Cho, J.-W. Jang, J.S. Lee, K.-H. Lee, Langmuir 26, 14255 (2010)

    Article  CAS  Google Scholar 

  54. M.-K. Liang, O. Deschaume, S.V. Patwardhan, C.C. Perry, J. Mater. Chem. 21, 80 (2011)

    Article  CAS  Google Scholar 

  55. S. Music, D. Dragcevic, M. Maljkovic, S. Popovic, Mater. Chem. Phys. 77, 521 (2003)

    Article  CAS  Google Scholar 

  56. D. Li, H. Haneda, Chemosphere 51, 129 (2003)

    Article  CAS  Google Scholar 

  57. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (John Wiley, New York, 1974)

  58. J.-M. Oh, S.-H. Hwang, J.-H. Choy, Solid State Ionics 151, 285 (2002)

    Article  CAS  Google Scholar 

  59. L. Addadi, S. Weiner, PNAS 82, 4110 (1985)

    Article  CAS  Google Scholar 

  60. L. Addadi, Z. Berkovitch-Yellin, I. Weissbuch, J. Van Mil, L.J.W. Shimon, M. Lahav, Angew. Chem. Int. Edit. 24, 466 (1985)

    Article  Google Scholar 

  61. S. Golovko, R. Munoz-Espí, G. Wegner, Langmuir 23, 3566 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank YTUAF (project no: 29-07-01-ODAP01) for their support of this work. The authors thank Dr. Andrew Cutler for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mualla Oner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akin, B., Oner, M. Aqueous pathways for formation of zinc oxide particles in the presence of carboxymethyl inulin. Res Chem Intermed 38, 1511–1525 (2012). https://doi.org/10.1007/s11164-011-0481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0481-x

Keywords

Navigation