Skip to main content

Advertisement

Log in

Zeolite-supported silver and silver–iron nanoclusters and their activities as photodecomposition catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Catalysts containing nanoclusters of Ag(I) and Fe2O3 as dopants with sodalite and Y zeolite supports have been investigated in order to develop a more efficient catalyst for photodecomposition of the pesticide carbaryl and to gain insight about the reaction mechanism. Ag(I)–sodalite, Ag(I)/Fe2O3–sodalite, Ag(I)–Y zeolite, and Ag(I)/Fe2O3–Y zeolite were synthesized by ion-exchange techniques and characterized by powder X-ray diffraction (XRD), solid-state luminescence, UV–visible absorption, and atomic absorption spectroscopy measurements. The luminescence activity of the sodalite-supported and Y zeolite-supported catalysts was significantly different. Catalyst performance studies were conducted using carbaryl as the target compound and specific wavelengths of UV light as photon sources for the experiments. The studies showed that each catalyst’s performance was determined primarily by the specific wavelength of the UV light with which the system was irradiated. The studies also showed that inclusion of Fe2O3 as dopant enhanced the reactivity of the catalysts in several instances, with the Ag(I)/Fe2O3–sodalite catalyst and 298 nm irradiation being the most reactive of the systems studied. Additional reactions using each catalyst and 298 nm irradiation, and including either sodium bicarbonate as hydroxyl radical scavenger or D2O as solvent, showed that hydroxyl radicals were likely intermediates in the catalyzed photodecomposition reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American Crop Protection Association, Chem. Eng. News 73, 3 (1995)

    Google Scholar 

  2. R.T. Fukuto, Univ. Calif. Agric. Exp. Stn Publ. 3, 2 (1987)

    Google Scholar 

  3. E. Gachard, J. Belloni, M.A. Subramanian, J. Mater. Chem. 6, 867 (1996)

    Article  CAS  Google Scholar 

  4. L.R. Gellens, J.V. Smith, J.J. Pluth, J. Am. Chem. Soc. 103, 51 (1981)

    Article  Google Scholar 

  5. L.R. Gellens, W.J. Mortier, R.A. Schoonheydt, J.B. Uytterhoeven, J. Phys. Chem. 85, 2783 (1981)

    Article  CAS  Google Scholar 

  6. R.A. Schoonheydt, M.B. Hall, J.H. Lunsford, Inorg. Chem. 22, 3834 (1983)

    Article  CAS  Google Scholar 

  7. J. Michalik, T. Wasowicz, A.V. der Pol, E.J. Reijerse, E. de Boer, J. Chem. Soc. Chem. Commun. 29 (1992)

  8. P.A. Jacobs, M. Tielen, J.B. Uytterhoeven, J. Chem Soc. Faraday Trans. 1 72, 2793 (1976)

    Article  CAS  Google Scholar 

  9. M. Anpo, M. Tomonari, M. Fox, J. Phys. Chem. 93, 7300 (1989)

    Article  CAS  Google Scholar 

  10. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987)

    Article  CAS  Google Scholar 

  11. M. Anpo, M. Sunamoto, M. Che, J. Phys. Chem. 93, 1187 (1989)

    Article  CAS  Google Scholar 

  12. M. Matsuoka, W. Ju, H. Chen, Y. Sakatani, M. Anpo, Res. Chem. Intermed. 29, 477 (2003)

    Article  CAS  Google Scholar 

  13. S.M. Kanan, M.C. Kanan, H.H. Patterson, Curr. Opin. Solid State Mater. Sci. 7, 443 (2003)

    Article  CAS  Google Scholar 

  14. G. Calzaferri, G.C. Leiggener, S. Glaus, D. Schurch, K. Kuge, Chem. Soc. Rev. 32, 29 (2003)

    Article  CAS  Google Scholar 

  15. T. Sun, K. Seff, Chem. Rev. 94, 857 (1994)

    Article  CAS  Google Scholar 

  16. S.M. Kanan, M.C. Kanan, H.H. Patterson, J. Phys. Chem. B 105, 7508 (2001)

    Article  CAS  Google Scholar 

  17. S.M. Kanan, M.C. Kanan, H.H. Patterson, J. Phys. Chem. B 104, 3507 (2000)

    Article  CAS  Google Scholar 

  18. W. Ju, M. Matsuoka, K. Iino, H. Yamashita, M. Anpo, J. Phys. Chem. B 108, 2128 (2004)

    Article  CAS  Google Scholar 

  19. M.C. Kanan, S.M. Kanan, H.H. Patterson, Res. Chem. Intermed. 29, 691 (2003)

    Article  CAS  Google Scholar 

  20. M.C. Kanan, S.M. Kanan, R.N. Austin, H.H. Patterson, Environ. Sci. Technol. 37, 2280 (2003)

    Article  CAS  Google Scholar 

  21. M. Matsuoka, M. Anpo, J. Photochem. Photobiol. C 3, 225 (2003)

    Article  CAS  Google Scholar 

  22. O.S. Alexeev, B.C. Gates, Ind. Eng. Chem. Res. 42, 1571 (2003)

    Article  CAS  Google Scholar 

  23. A. Chambers, N.M. Rodriguez, R.T.K. Baker, J. Phys. Chem. 100, 4229 (1996)

    Article  CAS  Google Scholar 

  24. T.N. Angelidis, V. Tzitzios, Ind. Eng. Chem. Res. 42, 2996 (2003)

    Article  CAS  Google Scholar 

  25. M.S. Nashner, D.M. Somerville, P.D. Lane, D.L. Adler, J.R. Shapley, R.G. Nuzzo, J. Am. Chem. Soc. 118, 12964 (1996)

    Article  CAS  Google Scholar 

  26. P.A. Derosa, J.M. Seminario, P.B. Balbuena, J. Phys. Chem. A 105, 7917 (2001)

    Article  CAS  Google Scholar 

  27. F. Dorado, A. de Lucas, P.B. Garcia, A. Romero, J.L. Valverde, I. Asencio, Ind. Eng. Chem. Res. 44, 8988 (2005)

    Article  CAS  Google Scholar 

  28. T.M. Tesfai, V.N. Sheinker, M.B. Mitchell, J. Phys. Chem. 102, 7299 (1998)

    CAS  Google Scholar 

  29. B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, K.C. Ott, J. Catal. 225, 300 (2004)

    Article  CAS  Google Scholar 

  30. A. Abraham, S.H. Lee, C.H. Shin, S.B. Hong, R. Prins, J.A. Van Bokhoven, Phys. Chem. Chem. Phys. 6, 3031 (2004)

    Article  CAS  Google Scholar 

  31. N.P. Ayala, J.N. Demas, B.A. DeGraff, J. Am. Chem. Soc. 110, 1523 (1988)

    Article  CAS  Google Scholar 

  32. M.A. Omary, H.H. Patterson, J. Am. Chem. Soc. 120, 7696 (1998)

    Article  CAS  Google Scholar 

  33. H.H. Patterson, R.S. Gomez, H. Lu, R.L. Yson, Catal. Today 120, 168 (2007)

    Article  CAS  Google Scholar 

  34. M. Tarek, M. Zaki, L.F.M. Esmail, A.Y.F. El-Sayed, J. Anal. Chem. 331, 607 (1988)

    CAS  Google Scholar 

  35. K.-W. Cha, K.-W. Park, Talanta 46, 1567 (1998)

    Article  CAS  Google Scholar 

  36. T.D. Waite, F.M. Morel, Environ. Sci. Technol. 18, 860 (1984)

    Article  CAS  Google Scholar 

  37. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 22, 798 (1988)

    Article  CAS  Google Scholar 

  38. C. Siffert, B. Sulzberger, Langmuir 7, 1627 (1991)

    Article  CAS  Google Scholar 

  39. F.J. Beltran, M. Gonzalez, F.J. Rivas, P. Alvarez, Environ. Toxicol. Chem. 15, 868 (1996)

    CAS  Google Scholar 

  40. N.J. Turro, Modern molecular photochemistry (University Science Books, Sausalito, 1991)

    Google Scholar 

Download references

Acknowledgments

We thank Professor Rachel Austin of the Department of Chemistry at Bates College for helpful discussions regarding this research. This work was funded by the US Department of Defense under contract number W911NF-04-1-0246 and the National Science Foundation under contract number CHE-0315877.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard H. Patterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, R.S., Li, X., Yson, R.L. et al. Zeolite-supported silver and silver–iron nanoclusters and their activities as photodecomposition catalysts. Res Chem Intermed 37, 729–745 (2011). https://doi.org/10.1007/s11164-011-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0313-z

Keywords

Navigation