Skip to main content
Log in

Nitrogen doping into titanium dioxide by the sol–gel method using nitric acid

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

N-doped TiO2 has been prepared by use of sol–gel systems containing titanium alkoxide, with nitric acid as the nitrogen source. The time needed for gelation of the systems was drastically reduced by ultrasonic irradiation. The peaks assigned to the nitrate and nitrous ions were observed by FT-IR measurement during the sol–gel reaction. The N-doping was confirmed by the observation of N–O peaks in the XPS spectrum of the sample heated at 400 °C. The nitrate ion acted as an oxidizer of the ethanol solvent and titanium species. The TiO2 became doped with nitrogen oxide species as a result of reduction of nitrate ion incorporated into the dried gel samples. These results indicated that the added nitric acid was reduced during the sol–gel transition and heating process, and the resulting NO species were situated in the titania networks. The UV and visible photocatalytic activity of the samples was confirmed by the degradation of trichloroethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem, C. Photobiol, Photochem. Rev. 1, 1 (2000)

    Article  CAS  Google Scholar 

  2. D. Chatterjee, S. Dasgupta, J. Photochem, C. Photobiol, Photochem. Rev. 6, 186 (2005)

    Article  CAS  Google Scholar 

  3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  4. S. Yang, L. Gao, J. Am. Ceram. Soc. 87, 1803 (2004)

    Article  CAS  Google Scholar 

  5. S.K. Joung, T. Amemiya, M. Murabayashi, K. Itoh, Chem. Eur. J. 12, 5526 (2006)

    Article  CAS  Google Scholar 

  6. R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108, 10617 (2004)

    Article  CAS  Google Scholar 

  7. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, J. Am. Chem. Soc. 131, 12290 (2009)

    Article  CAS  Google Scholar 

  8. C.W.H. Dunnill, Z.A. Aiken, J. Pratten, M. Wilson, D.J. Morgan, I.P. Parkin, J. Photochem. Photobiol. A: Chem. 207, 244 (2009)

    Article  CAS  Google Scholar 

  9. C. Sarantopoulos, A.N. Gleizes, F. Maury, Thin Solid Films 518, 1299 (2009)

    Article  CAS  Google Scholar 

  10. J. Wang, Z. Wang, H. Li, Y. Cui, Y. Du, J. Alloys Compd. 494, 372 (2010)

    Article  CAS  Google Scholar 

  11. L. Han, Y. Xin, H. Liu, X. Ma, G. Tang, J. Hazard. Mater. 175, 524 (2010)

    Article  CAS  Google Scholar 

  12. T. Ohsawa, M.A. Henderson, S.A. Chambers, J. Phys. Chem. C 114, 6595 (2010)

    Article  CAS  Google Scholar 

  13. S. Sato, Chem. Phys. Lett. 123, 126 (1986)

    Article  CAS  Google Scholar 

  14. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B: Environ. 42, 403 (2003)

    Article  CAS  Google Scholar 

  15. D.P. Subagio, M. Srinivasan, M. Lim, T. Lim, Appl. Catal. B: Environ. 95, 414 (2010)

    Article  CAS  Google Scholar 

  16. A.R. Gandhe, S.P. Naik, J.B. Fernandes, Microporous Mesoporous Mater. 87, 103 (2005)

    Article  CAS  Google Scholar 

  17. H. Choi, M.G. Antoniou, M. Pelaez, A.A. De la Cruz, J.A. Shoemaker, D.D. Dionysiou, Environ. Sci. Technol. 41, 7530 (2007)

    Article  CAS  Google Scholar 

  18. T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, S.B. Ogale, J. Phys. Chem. C 112, 14595 (2008)

    Article  CAS  Google Scholar 

  19. J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard. Mater. 168, 253 (2009)

    Article  CAS  Google Scholar 

  20. Y. Yokosuka, K. Oki, H. Nishikiori, Y. Tatsumi, N. Tanaka, T. Fujii, Res. Chem. Intermed. 35, 43 (2009)

    Article  CAS  Google Scholar 

  21. C.X. Dong, A.P. Xian, E.H. Ham, J.K. Shang, J. Mater. Sci. 41, 6168 (2006)

    Article  CAS  Google Scholar 

  22. K. Oki, S. Tsuchida, H. Nishikiori, N. Tanaka, T. Fujii, Int. J. Photoenergy 5, 11 (2003)

    Article  CAS  Google Scholar 

  23. K. Oki, S. Yamada, S. Tsuchida, H. Nishikiori, N. Tanaka, T. Fujii, Res. Chem. Intermed. 29, 827 (2003)

    Article  CAS  Google Scholar 

  24. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, J. Mater. Chem. 11, 1694 (2001)

    Article  CAS  Google Scholar 

  25. A.J. Maira, K.L. Yeung, C.Y. Lee, P.L. Yue, C.K. Chan, J. Catal. 192, 185 (2000)

    Article  CAS  Google Scholar 

  26. S. Sato, R. Nakamura, S. Abe, Appl. Catal. A: Gen. 284, 131 (2005)

    Article  CAS  Google Scholar 

  27. P. Tarte, Physics of Non-Crystalline Solids (North Holland, Amsterdam, 1965), p. 549

    Google Scholar 

  28. M.L. Galzada, L. Delolmo, J. Non-Cryst. Solids 121, 413 (1990)

    Article  Google Scholar 

  29. G. Ben Amor, J.P. Baud, M. Besse, Jacquet, Mater. Sci. Eng B 47, 110 (1997)

    Article  Google Scholar 

  30. L. Castañeda, J.C. Alonso, A. Ortiz, E. Andrade, J.M. Saniger, J.G. Bañuelos, Mater. Chem. Phys. 77, 938 (2002)

    Article  Google Scholar 

  31. P.B. Amama, K. Itoh, M. Murabayashi, J. Mol. Catal. A: Chem. 176, 165 (2001)

    Article  CAS  Google Scholar 

  32. J.S. Kim, K. Itoh, M. Murabayashi, B.A. Kim, Chemosphere 38, 2969 (1999)

    Article  CAS  Google Scholar 

  33. M. Kang, J.H. Lee, S.H. Lee, C.H. Chung, K.J. Yoon, K. Ogino, S. Miyata, S.J. Choung, J. Mol. Catal. A: Chem. 193, 273 (2003)

    Article  CAS  Google Scholar 

  34. W.A. Jacoby, M.R. Nimlos, D.M. Blake, R.D. Noble, C.A. Koval, Environ. Sci. Technol. 28, 1661 (1994)

    Article  CAS  Google Scholar 

  35. J. Fan, J. T. Yates Jr, J. Am. Chem. Soc. 118, 4686 (1996)

    Article  CAS  Google Scholar 

  36. M.D. Driessen, A.L. Goodman, T.M. Miller, G.A. Zaharias, V.V. Grassian, J. Phys. Chem. B 102, 549 (1998)

    Article  CAS  Google Scholar 

  37. J.S. Kim, K. Itoh, M. Murabayashi, Chemosphere 36, 483 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Professor Kenichi Tenya of this university for his technical assistance with XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Nishikiori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikiori, H., Fukasawa, Y., Yokosuka, Y. et al. Nitrogen doping into titanium dioxide by the sol–gel method using nitric acid. Res Chem Intermed 37, 869–881 (2011). https://doi.org/10.1007/s11164-011-0294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0294-y

Keywords

Navigation