Skip to main content
Log in

Insect gut bacteria: a promising tool for enhanced biogas production

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Utilization of unexplored lignocellulolytic microbial resources is in demand due to its ability to degrade the waste-plant biomasses like water-hyacinth or noxious weeds for alternative second-generation biofuel production, i.e., biogas. One such “biotechnological treasure-box” is the herbivorous insect gut-system, as its’ symbionts produce key hydrolytic enzymes like lignocellulases, cellulases, xylanases, and pectinases responsible for degradation of their host’s diet plant-biomasses. In this context, this review revealed such lignocellulolytic gut bacterial populations inhabiting the gut-system of only eight orders viz., Blattodea, Lepidoptera, Isoptera, Coleoptera, Orthoptera, Hemiptera, Hymenoptera, and Diptera among 31 insect orders. Proteobacteria is the most predominant group found in every case. Regarding enhanced biogas production, gut bacteria from only three insect orders i.e., Blattodea, Coleoptera, and Diptera were explored so far. Therefore, deployment of such gut bacteria with immense lignocellulolytic potentialities can be harnessed as the sustainable bioresource technology for augmented biogas production utilizing waste-plant biomasses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdurrahman MI, Chaki S, Saini G (2020) Stubble burning: effects on health & environment, regulations and management practices. Environ Adv 2:100011

    Google Scholar 

  • Abraham A, Mathew AK, Park H, Choi O, Sindhu R, Parameswaran B, Pandey A, Park JH, Sang BI (2020) Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour Technol 301:122725

    CAS  Google Scholar 

  • Afzal M, Qureshi MZ, Khan S, Khan MI, Ikram H, Ashraf A, Iqbal A, Qureshi NA (2019) Production, purification and optimization of cellulase by Bacillus licheniformis HI-08 isolated from the hindgut of wood-feeding termite. Int J Agric Biol 21(1):125–134

    CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    CAS  Google Scholar 

  • Ali HR, Hemeda NF, Abdelaliem YF (2019) Symbiotic cellulolytic bacteria from the gut of the subterranean termite Psammotermes hypostoma Desneux and their role in cellulose digestion. AMB Express 9(1):1–9

    Google Scholar 

  • Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: Current status and perspectives. Biotechnol Adv 36(2):452–466

    CAS  Google Scholar 

  • Anukam US, Ogbulie JN, Akujuobi C, Braide W (2020) Isolation of high lignolytic bacteria from Termites’s gut as potential booster in for enhanced biogas production. Biotechnol J Int 5:19–23

    Google Scholar 

  • Appel HM (2017) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In: Insect-plant interactions, pp 209–224. CRC Press

  • Arfah RA, Natsir H, Atifah N, Zarkoni TR, Mahmud M (2019) Isolation and characterization of Soil Termites (Macrotermes gilvus) cellulolytic bacteria and activity determination of cellulase enzyme on newsprint substrates. J Phys Conf Ser 1341(3):032037

    CAS  Google Scholar 

  • Atelge MR, Atabani AE, Banu JR, Krisa D, Kaya M, Eskicioglu C, Kumar G, Lee C, Yildiz YŞ, Unalan SEBAHATTİN, Mohanasundaram R (2020) A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 270:117494

    CAS  Google Scholar 

  • Azizah P, Wiyono HT, Muzakhar K (2020) Morphological and biochemical characteristic of endosymbiont cellulolytic bacteria from gut of Hypothenemus hampei Ferr. and its enzyme activity. AIP Conf Proc 2296(1):020013

    CAS  Google Scholar 

  • Baharuddin M, Ahmad A, La Nafie N, Zenta F (2016) Cellulase enzyme activity of Bacillus circulans from larvae Cossus cossus in lignocellulosic substrate. Am J Biomed Life Sci 4(2):21–25

    CAS  Google Scholar 

  • Banerjee S, Maiti TK, Roy RN (2021) Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1942777

    Article  Google Scholar 

  • Banerjee S, Maiti TK, Roy RN (2016) Identification and product optimization of amylolytic Rhodococcus opacus GAA 31.1 isolated from gut of Gryllotalpa africana. J Genetic Eng Biotechnol 14(1):133

    Google Scholar 

  • Banerjee S, Maiti TK, Roy RN (2020) Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Ann Microbiol 70(1):1–16

    Google Scholar 

  • Banerjee S, Maiti TK, Roy RN (2017) Protease production by thermo-alkaliphilic novel gut isolate Kitasatospora cheerisanensis GAP 12.4 from Gryllotalpa africana. Biocatal Biotransform 35(3):168–176

    CAS  Google Scholar 

  • Banerjee S, Mandal NC (2020) Fungal Bioagents in the remediation of degraded soils. In: Microbial services in restoration ecology, pp 191–205. Elsevier

  • Banu JR, Kannah RY, Kavitha S, Gunasekaran M, Yeom IT, Kumar G (2018) Disperser-induced bacterial disintegration of partially digested anaerobic sludge for efficient biomethane recovery. Chem Eng J 347:165–172

    CAS  Google Scholar 

  • Barbosa KL, dos Santos Malta VR, Machado SS, Junior GAL, da Silva APV, Almeida RMRG, da Luz JMR (2020) Bacterial cellulase from the intestinal tract of the sugarcane borer. Int J Biol Macromol 161:441–448

    CAS  Google Scholar 

  • Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29

    CAS  Google Scholar 

  • Bashir Z, Kondapalli VK, Adlakha N, Sharma A, Bhatnagar RK, Chandel G, Yazdani SS (2013) Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts. Sci Rep 3(1):1–11

    Google Scholar 

  • Bayané A, Guiot SR (2011) Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev Environ Sci Bio/technol 10(1):43–62

    Google Scholar 

  • Bayon C, Etiévant P (1980) Methanic fermentation in the digestive tract of a xylophagous insect: Oryctes nasicornis L. larva (Coleoptera; Scarabaeidae). Experientia 36(2):154–155

    CAS  Google Scholar 

  • Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects, vol 2. Springer, Berlin

    Google Scholar 

  • Bhatt AH, Tao L (2020) Economic perspectives of biogas production via anaerobic digestion. Bioengineering 7(3):74

    CAS  Google Scholar 

  • Bhuyan PM, Sandilya SP, Nath PK, Gandotra S, Subramanian S, Kardong D, Gogoi DK (2018) Optimization and characterization of extracellular cellulase produced by Bacillus pumilus MGB05 isolated from midgut of muga silkworm (Antheraea assamensis Helfer). J Asia-Pacific Entomol 21(4):1171–1181

    Google Scholar 

  • Biswas S, Paul D, Bhattacharjee A (2019) Isolation and identification of cellulose degrading bacteria from gut of two herbivorous pest larvae. The NEHU J 50:1098

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39(1):453–487

    CAS  Google Scholar 

  • Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN (2017) Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol 62(1):1–9

    CAS  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:1–17

    Google Scholar 

  • Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    CAS  Google Scholar 

  • Campanaro S, Treu L, Kougias PG, Luo G, Angelidaki I (2018) Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Res 140:123–134

    CAS  Google Scholar 

  • Cazemier AE (1999) (Hemi) cellulose degradation by microorganisms from the intestinal tract of arthropods. [Sl: sn]

  • Chan YH, Yusup S, Quitain AT, Tan RR, Sasaki M, Lam HL, Uemura Y (2015) Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment. Energy Convers Manag 104:180–188

    CAS  Google Scholar 

  • Chandra RP, Arantes V, Saddler J (2015) Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Biores Technol 185:302–307

    CAS  Google Scholar 

  • Chang YC, Choi D, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Biores Technol 152:429–436

    CAS  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431

    Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    CAS  Google Scholar 

  • Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33(7):1443–1454

    CAS  Google Scholar 

  • Cibichakravarthy B, Abinaya S, Prabagaran SR (2017) Syntrophic association of termite gut bacterial symbionts with bifunctional characteristics of cellulose degrading and polyhydroxyalkanoate producing bacteria. Int J Biol Macromol 103:613–620

    CAS  Google Scholar 

  • Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76(21):6963–6970

    CAS  Google Scholar 

  • Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5(1):1–11

    CAS  Google Scholar 

  • da Silva Paulo RN, Vieira AVG, Rodrigues P (2021) Evaluation of biogas production through anaerobic digestion of aquatic macrophytes in a Brazilian reservoir. J Energy Res Rev 18:1–14

    Google Scholar 

  • Dar MA, Shaikh AF, Pawar KD, Xie R, Sun J, Kandasamy S, Pandit RS (2021) Evaluation of cellulose degrading bacteria isolated from the gut-system of cotton bollworm, Helicoverpa armigera and their potential values in biomass conversion. Peer J 9:e11254

    Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Google Scholar 

  • de Lima Brossi MJ, Jiménez DJ, Cortes-Tolalpa L, van Elsas JD (2016) Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microb Ecol 71(3):616–627

    Google Scholar 

  • Dehghanikhah F, Shakarami J, Asoodeh A (2020) Purification and biochemical characterization of alkalophilic cellulase from the symbiotic Bacillus subtilis BC1 of the leopard Moth, Zeuzera pyrina (L) (Lepidoptera: Cossidae). Curr Microbiol 77(7):1254–1261

    CAS  Google Scholar 

  • Divya D, Gopinath LR, Christy PM (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sustain Energy Rev 42:690–699

    CAS  Google Scholar 

  • Douglas AE (1992) Microbial brokers of insect-plant interactions. In: Proceedings of the 8th international symposium on insect-plant relationships, pp 329–336. Springer, Dordrecht

  • Edwiges T, Frare L, Mayer B, Lins L, Triolo JM, Flotats X, de Mendonça Costa MSS (2018) Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag 71:618–625

    Google Scholar 

  • Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci 109(27):11002–11007

    CAS  Google Scholar 

  • Femi-Ola TO, Oyebamiji BA (2019) Molecular characterization and cellulolytic activities of bacterial isolates from the hindgut of wood-feeding termites Amitermes evuncifer Silvestri. J Adv Microbiol 22:1–10

    Google Scholar 

  • Fox-Dobbs K, Doak DF, Brody AK, Palmer TM (2010) Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna. Ecology 91(5):1296–1307

    Google Scholar 

  • Fukui T, Kawamoto M, Shoji K, Kiuchi T, Sugano S, Shimada T, Suzuki Y, Katsuma S (2015) The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathogens 11(7):e1005048

    Google Scholar 

  • Gales A, Chatellard L, Abadie M, Bonnafous A, Auer L, Carrère H, Godon JJ, Hernandez-Raquet G, Dumas C (2018) Screening of phytophagous and xylophagous insects guts microbiota abilities to degrade lignocellulose in bioreactor. Front Microbiol 9:2222

    Google Scholar 

  • Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage 27(1):117–129

    Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725

    CAS  Google Scholar 

  • Haider MR, Yousaf S, Malik RN, Visvanathan C (2015) Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Biores Technol 190:451–457

    CAS  Google Scholar 

  • Hasegawa S, Shiota N, Katsura K, Akashi A (2000) Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Sci Echnol 41(3):163–169

    CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13(2–3):125–135

    CAS  Google Scholar 

  • Hatefi A, Makhdoumi A, Asoodeh A, Mirshamsi O (2017) Characterization of a bi-functional cellulase produced by a gut bacterial resident of Rosaceae branch borer beetle, Osphranteria coerulescens (Coleoptera: Cerambycidae). Int J Biol Macromol 103:158–164

    CAS  Google Scholar 

  • Hayashi A, Aoyagi H, Yoshimura T, Tanaka H (2007) Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng 103(4):358–367

    CAS  Google Scholar 

  • Heng KS, Hatti-Kaul R, Adam F, Fukui T, Sudesh K (2017) Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). J Chem Technol Biotechnol 92(1):100–108

    CAS  Google Scholar 

  • Hernández-Beltrán JU, Lira HD, Omar I, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9(18):3721

    Google Scholar 

  • Heyer R, Schallert K, Siewert C, Kohrs F, Greve J, Maus I, Klang J, Klocke M, Heiermann M, Hoffmann M, Püttker S (2019) Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome 7(1):1–17

    Google Scholar 

  • Howard RL, Abotsi ELJR, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotech 2(12):602–619

    CAS  Google Scholar 

  • Huang SW, Zhang HY, Marshall S, Jackson TA (2010) The scarab gut: a potential bioreactor for bio-fuel production. Insect Science 17(3):175–183

    CAS  Google Scholar 

  • Industrial enzymes market by type (carbohydrases, proteases, non-starch polysaccharides & others), application (food &beverage, cleaning agents, animal feed & others), brands & by region global trends and forecasts to 2026. https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html. Accessed 02 Dec 2021

  • Javaheri-Kermani M, Asoodeh A (2019) A novel beta-1, 4 glucanase produced by symbiotic Bacillus sp. CF96 isolated from termite (Anacanthotermes sp.). Int J Biol Macromol 131:752–759

    CAS  Google Scholar 

  • Jing TZ, Qi FH, Wang ZY (2020) Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 8(1):1–20

    Google Scholar 

  • Joynson R, Pritchard L, Osemwekha E, Ferry N (2017) Metagenomic analysis of the gut microbiome of the common black slug Arion ater in search of novel lignocellulose degrading enzymes. Front Microbiol 8:2181

    Google Scholar 

  • Kalyani D, Lee KM, Kim TS, Li J, Dhiman SS, Kang YC, Lee JK (2013) Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107:815–822

    CAS  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Biores Technol 200:1008–1018

    CAS  Google Scholar 

  • Kaur M, Srikanth S, Kumar M, Sachdeva S, Puri SK (2019) An integrated approach for efficient conversion of Lemna minor to biogas. Energy Convers Manag 180:25–35

    CAS  Google Scholar 

  • Kavitha S, Gopinath LR, Christy PM (2014) Isolation of methanogens from termite gut and its role in biogas production by using poultry waste. Int J Plant Anim Environ Sci 4(4):281–286

    Google Scholar 

  • Khan FA, Anis SB, Badruddin SMA (2010) Plant defenses against insect herbivory. Integr Manag Arthropod Pests Insect Borne Dis 9:189–208

    Google Scholar 

  • Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38(7):803–807

    CAS  Google Scholar 

  • Koo T, Yulisa A, Hwang S (2019) Microbial community structure in full scale anaerobic mono-and co-digesters treating food waste and animal waste. Biores Technol 282:439–446

    CAS  Google Scholar 

  • Kudo R, Masuya H, Endoh R, Kikuchi T, Ikeda H (2019) Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J 13(3):676–685

    CAS  Google Scholar 

  • Kumar G, Dharmaraja J, Arvindnarayan S, Shoban S, Bakonyi P, Saratale GD, Nemestóthy N, Bélafi-Bakó K, Yoon JJ, Kim SH (2019) A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel 251:352–367

    CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    CAS  Google Scholar 

  • Kurakake M, Ide N, Komaki T (2007) Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr Microbiol 54(6):424–428

    CAS  Google Scholar 

  • LaBelle C (2018) Therapeutic play workshops christine LaBelle and Korinna Locke Lasell College April 10

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2(3):e201209017

    Google Scholar 

  • Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13(4):514–525

    CAS  Google Scholar 

  • Li P, He C, Li G, Ding P, Lan M, Gao Z, Jiao Y (2020) Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered 11(1):251–260

    CAS  Google Scholar 

  • Li Y, Lei L, Zheng L, Xiao X, Tang H, Luo C (2020) Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol Biofuels 13(1):1–12

    Google Scholar 

  • Liang X, Sun C, Chen B, Du K, Yu T, Luang-In V, Lu X, Shao Y (2018) Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol 102(11):4951–4962

    CAS  Google Scholar 

  • Lugani Y, Singh J, Sooch BS (2021) Scale-up process for xylose reductase production using rice straw hydrolysate. Biomass Convers Biorefinery 29:1–2

    Google Scholar 

  • Luo C, Li Y, Chen Y, Fu C, Long W, Xiao X, Liao H, Yang Y (2019) Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnol Biofuels 12(1):1–16

    Google Scholar 

  • Lysenko O (1985) Non-sporeforming bacteria pathogenic to insects: incidence and mechanisms. Annu Rev Microbiol 39(1):673–695

    CAS  Google Scholar 

  • Ma S, Jiang F, Huang Y, Zhang Y, Wang S, Fan H, Liu B, Li Q, Yin L, Wang H, Liu H (2021) A microbial gene catalog of anaerobic digestion from full-scale biogas plants. GigaScience 10(1):giaa164

    Google Scholar 

  • Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427

    CAS  Google Scholar 

  • Mohammed D, Abdelaziz M, Sidi A, Mohammed E, Elmostapha E (2019) Wind speed data and wind energy potential using Weibull distribution in Zagora, Morocco. Int J Renew Energy Dev 8(3):267–273

    Google Scholar 

  • Moran NA, Telang A (1998) Bacteriocyte-associated symbionts of insects. Bioscience 48(4):295–304

    Google Scholar 

  • Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20(3):358–363

    CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96(6):673–686

    CAS  Google Scholar 

  • Mund NK, Dash D, Mishra P, Nayak NR (2021) Cellulose solvent–based pretreatment and enzymatic hydrolysis of pineapple leaf waste biomass for efficient release of glucose towards biofuel production. Biomass Convers Biorefinery 3:1–10

    Google Scholar 

  • Mwirigi J, Balana BB, Mugisha J, Walekhwa P, Melamu R, Nakami S, Makenzi P (2014) Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review. Biomass Bioenerg 70:17–25

    Google Scholar 

  • Naik L, Gebreegziabher Z, Tumwesige V, Balana BB, Mwirigi J, Austin G (2014) Factors determining the stability and productivity of small scale anaerobic digesters. Biomass Bioenerg 70:51–57

    CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev 50:925–941

    CAS  Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6(2):663–677

    CAS  Google Scholar 

  • Negi GC, Sharma S, Vishvakarma SC, Samant SS, Maikhuri RK, Prasad RC, Palni LM (2019) Ecology and use of Lantana camara in India. Bot Rev 85(2):109–130

    Google Scholar 

  • Niu Q, Zhang G, Zhang L, Ma Y, Shi Q, Fu W (2016) Purification and characterization of a thermophilic 1, 3–1, 4-β-glucanase from Bacillus methylotrophicus S2 isolated from booklice. J Biosci Bioeng 121(5):503–508

    CAS  Google Scholar 

  • Palmowski LM, Müller JA (2000) Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci Technol 41(3):155–162

    CAS  Google Scholar 

  • Pandey A, Biswas S, Sukumaran RK, Kaushik N (2009) Study on availability of Indian biomass resources for exploitation: a report based on a nation-wise survey. In: TIFAC, New Delhi, vol 105

  • Pandiarajan J, Revathy K (2020) Cellulolytic potential of gut bacterial biomass in silkworm Bombyx mori. L. Ecol Genet Genom 14:100045

    Google Scholar 

  • Patinvoh RJ, Osadolor OA, Chandolias K, Horváth IS, Taherzadeh MJ (2017) Innovative pretreatment strategies for biogas production. Biores Technol 224:13–24

    CAS  Google Scholar 

  • Porichha GK, Hu Y, Rao KTV, Xu CC (2021) Crop residue management in India: stubble burning vs. other utilizations including. Bioenergy Energies 14(14):4281

    CAS  Google Scholar 

  • Prasad RK, Chatterjee S, Mazumder PB, Sharma S, Datta S, Vairale MG, Dwivedi SK (2019) Study on cellulase (Β-1, 4-endoglucanase) activity of gut bacteria of Sitophilus oryzae in cellulosic waste biodegradation. Bioresour Technol Rep 7:100274

    Google Scholar 

  • Prem Anand AA, Vennison SJ, Sankar SG, Gilwax Prabhu DI, Vasan PT, Raghuraman T, Jerome Geoffrey C, Vendan SE (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 10(1):107

    Google Scholar 

  • Reshamwala S, Shawky BT, Dale BE (1995) Ethanol production from enzymatic hydrolysates of AFEX-treated coastal bermudagrass and switchgrass. Appl Biochem Biotechnol 51(1):43–55

    Google Scholar 

  • Robles G, Nair RB, Kleinsteuber S, Nikolausz M, Horváth IS (2018) Biogas production: microbiological aspects. In: Biogas, pp 163–198. Springer, Cham

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Google Scholar 

  • Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M (2014) Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B Biol Sci 281(1796):20141838

    Google Scholar 

  • Schnürer A (2016) Biogas production: microbiology and technology. Anaerobes Biotechnol 2:195–234

    Google Scholar 

  • Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PloS one 8(9):e73827

    CAS  Google Scholar 

  • Sepehri A, Sarrafzadeh MH, Avateffazeli M (2020) Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J Clean Prod 247:119164

    CAS  Google Scholar 

  • Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sustain Energy Rev 42:627–642

    CAS  Google Scholar 

  • Shankar T, Sankaralingam S, Balachandran C, Chinnathambi A, Nasif O, Alharbi SA, Park S, Baskar K (2021) Purification and characterization of carboxymethylcellulase from Bacillus pumilus EWBCM1 isolated from earthworm gut (Eudrilus eugeniae). J King Saud Univ Sci 33(1):101261

    Google Scholar 

  • Sharma S, Prasad RK, Chatterjee S, Sharma A, Vairale MG, Yadav KK (2019) Characterization of Bacillus species with keratinase and cellulase properties isolated from feather dumping soil and cockroach gut. Proc Natl Acad Sci India Sect B Biol Sci 89(3):1079–1086

    CAS  Google Scholar 

  • Sheng P, Huang S, Wang Q, Wang A, Zhang H (2012) Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Appl Biochem Biotechnol 167(2):270–284

    CAS  Google Scholar 

  • Shrestha S, Fonoll X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Biores Technol 245:1245–1257

    CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Biores Technol 199:76–82

    CAS  Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24(5):667–673

    CAS  Google Scholar 

  • Sinha D, Banerjee S, Mandal S, Basu A, Banerjee A, Balachandran S, Mandal NC, Chaudhury S (2021) Enhanced biogas production from Lantana camara via bioaugmentation of cellulolytic bacteria. Bioresour Technol 340:125652

    CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211

    CAS  Google Scholar 

  • Sreena CP, Resna NK, Sebastian D (2015) Isolation and characterization of cellulase producing bacteria from the gut of termites (Odontotermes and Heterotermes species). Biotechnol J Int 9:1–10

    Google Scholar 

  • Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8(1):1–18

    Google Scholar 

  • Sträuber H, Lucas R, Kleinsteuber S (2016) Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl Microbiol Biotechnol 100(1):479–491

    Google Scholar 

  • Surabhi K, Rangeshwaran R, Frenita ML, Shylesha AN, Jagadeesh P (2018) Isolation and characterization of the culturable microbes associated with gut of adult dung beetle Onitis philemon (Fabricius). J Pharmacogn Phytochem 7(2):1609–1614

    CAS  Google Scholar 

  • Tanada Y, Kaya HK (1993) Associations between insects and nonpathogenics microorganisms. Insect Pathol 6:12–51

    Google Scholar 

  • Thapa S, Mishra J, Arora N, Mishra P, Li H, O’Hair J, Bhatti S, Zhou S (2020) Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Bio/Technol 19:621–48

    CAS  Google Scholar 

  • Theuerl S, Klang J, Heiermann M, De Vrieze J (2018) Marker microbiome clusters are determined by operational parameters and specific key taxa combinations in anaerobic digestion. Biores Technol 263:128–135

    CAS  Google Scholar 

  • Tsegaye B, Balomajumder C, Roy P (2019) Isolation and characterization of novel lignolytic, cellulolytic, and hemicellulolytic bacteria from wood-feeding termite Cryptotermes brevis. Int Microbiol 22(1):29–39

    CAS  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017) Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: a review. Biores Technol 245:1206–1219

    CAS  Google Scholar 

  • Vidmar B, Fanedl L, Logar RM, Panjičko M (2017) Influence of thermal and bacterial pretreatment of microalgae on biogas production in mesophilic and thermophilic conditions. Acta Chim Slov 64(1):227–236

    CAS  Google Scholar 

  • Vilanova C, Marco G, Domínguez-Escribà L, Genovés S, Sentandreu V, Bataller E, Ramón D, Porcar M (2012) Bacteria from acidic to strongly alkaline insect midguts: potential sources of extreme cellulolytic enzymes. Biomass Bioenerg 45:288–294

    CAS  Google Scholar 

  • Wang L, Feng Y, Tian J, Xiang M, Sun J, Ding J, Yin WB, Stadler M, Che Y, Liu X (2015) Farming of a defensive fungal mutualist by an attelabid weevil. ISME J 9(8):1793–1801

    Google Scholar 

  • Wang Y, Liu Q, Yan L, Gao Y, Wang Y, Wang W (2013) A novel lignin degradation bacterial consortium for efficient pulping. Biores Technol 139:113–119

    CAS  Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394(6691):330–331

    CAS  Google Scholar 

  • Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L (2002) Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc Natl Acad Sci 99(3):1410–1413

    CAS  Google Scholar 

  • Wiseman A (1995) Introduction to principles. In: Wiseman A (ed) Handbook of enzyme biotechnology. Padstow, New York

    Google Scholar 

  • Woiciechowski AL, Neto CJD, de Souza Vandenberghe LP, de Carvalho Neto DP, Sydney ACN, Letti LAJ, Karp SG, Torres LAZ, Soccol CR (2020) Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance–conventional processing and recent advances. Bioresour Technol 304:122848

    Google Scholar 

  • Xiao X, Mazza L, Yu Y, Cai M, Zheng L, Tomberlin JK, Yu J, van Huis A, Yu Z, Fasulo S, Zhang J (2018) Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L.(Diptera: Stratiomyidae) larvae and functional bacteria. J Environ Manage 217:668–676

    CAS  Google Scholar 

  • Xie S, Lan Y, Sun C, Shao Y (2019) Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol 35(2):25

    Google Scholar 

  • Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Biores Technol 245:419–425

    CAS  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784

    CAS  Google Scholar 

  • Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev 44:824–834

    CAS  Google Scholar 

  • Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80(17):5254–5264

    Google Scholar 

  • Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258

    CAS  Google Scholar 

  • Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Biores Technol 102(19):8899–8906

    CAS  Google Scholar 

  • Zhang Q, Hu J, Lee DJ (2017) Pretreatment of biomass using ionic liquids: research updates. Renew Energy 111:77–84

    CAS  Google Scholar 

  • Zhang Q, Zhang J, Zhao S, Song P, Chen Y, Liu P, Mao C, Li X (2021) Enhanced biogas production by ligninolytic strain Enterobacter hormaechei KA3 for anaerobic digestion of corn straw. Energies 14(11):2990

    CAS  Google Scholar 

  • Zhong W, Zhang Z, Luo Y, Sun S, Qiao W, Xiao M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Biores Technol 102(24):11177–11182

    CAS  Google Scholar 

  • Zhu X, Campanaro S, Treu L, Kougias PG, Angelidaki I (2019) Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Res 151:271–279

    CAS  Google Scholar 

  • Zhu X, Campanaro S, Treu L, Seshadri R, Ivanova N, Kougias PG, Kyrpides N, Angelidaki I (2020) Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem. Microbiome 8(1):1–14

    Google Scholar 

  • Zhuo S, Yan X, Liu D, Si M, Zhang K, Liu M, Peng B, Shi Y (2018) Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. Biotechnol Biofuels 11(1):1–13

    Google Scholar 

  • Ziels RM, Svensson BH, Sundberg C, Larsson M, Karlsson A, Yekta SS (2018) Microbial rRNA gene expression and co-occurrence profiles associate with biokinetics and elemental composition in full-scale anaerobic digesters. Microb Biotechnol 11(4):694–709

    CAS  Google Scholar 

Download references

Acknowledgements

Binoy Kumar Show and Aishiki Banerjee are thankful to BBSRC, United Kingdom [Grant Ref: BB/S011439/1] for financial support and research fellowship. Sandipan Banerjee is thankful to the Department of Biotechnology, Govt. of India, for granting DBT Twinning Project [No. BT/PR25738/NER/95/1329/2017]. Richik GhoshThakur is thankful to the Department of Science and Technology, Govt. of India for financial support [DST (DST/TMD/MI/OMGI/ 2018/14)].

Author information

Authors and Affiliations

Authors

Contributions

BKS: Conceptualization, Data curation, Formal analysis, Investigation, Resources, Visualization Roles/Writing-original draft, Writing e review & editing. SB: Conceptualization, Data curation, Formal analysis, Investigation, Resources, Software, Visualization Roles/Writing–original draft, Writing e review & editing. AB: Formal analysis, Roles/Writing-original draft, Writing e review & editing. RGT: Data curation, Software & Formal analysis. AKH: Validation, Writing e review & editing. NCM: Validation, Writing e review & editing. ABR: Conceptualisation, Methodology, Validation, Project administration, Supervision, Writing e review & editing. SRB: Conceptualisation, Methodology, Validation, Project administration, Supervision, Writing e review & editing. SC: Conceptualisation, Methodology, Validation, Project administration, Supervision, Writing e review & editing.

Corresponding author

Correspondence to Srinivasan Balachandran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Show, B.K., Banerjee, S., Banerjee, A. et al. Insect gut bacteria: a promising tool for enhanced biogas production. Rev Environ Sci Biotechnol 21, 1–25 (2022). https://doi.org/10.1007/s11157-021-09607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-021-09607-8

Keywords

Navigation