Skip to main content

Insect Gut Bacteria and Their Potential Application in Degradation of Lignocellulosic Biomass: A Review

  • Chapter
  • First Online:
Bioremediation: Applications for Environmental Protection and Management

Abstract

Lignocellulosic biomass is most abundant in the environment. Enzymatic breakdown of lignocellulose, an important component of common waste materials, can be an essential step toward mitigating the wastes and generating biofuel. The diverse microbial community is maintained within the insect gut as per their food habit, ecological niche. Certain insects have shown tremendous enzymatic potential as a feed on lignocellulosic materials for their nutrition. In this context, scientific community has become interested to explore different insect gut microbial diversity through the advent of new technologies. The present manuscript encompasses the potential role of insect gut bacteria, aspects of colonization, and role in degradation of lignocellulosic biomass. Further, the significance of potential bacteria for harnessing the enzymes and appropriateness of application in lignocellulosic wastes degradation is also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, Horn SJ, Eijsink VGH, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111:6287–6292

    Article  CAS  Google Scholar 

  • Ahring BK, Westermann P (2007) Coproduction of bioethanol with other biofuels. Adv Biochem Eng Biotechnol 108:289–302

    CAS  Google Scholar 

  • Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE8:e83125. https://doi.org/10.1371/journal.pone.0083125

  • Appel HM, Martin MM (1990) Gut redox conditions in herbivorous lepidopteran larvae. J Chem Ecol 16 (12):3277–3290. https://doi.org/10.1007/BF00982098

  • Asgher M, Bashir F, Iqbal HMN (2014) A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnology to produce bio-ethanol. Chem Eng Res Des 92:1571–1578

    Article  CAS  Google Scholar 

  • Bae J, Morisaka H, Kuroda K, Ueda M (2013) Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes. J Mol Microbiol Biotechnol 2:370–378

    Article  Google Scholar 

  • Bashir Z, Kondapalli VK, Adlakha N, Sharma A, Bhatnagar RK, Chandel G, Yazdani SS (2013) Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts. Sci Rep 3:2558. https://doi.org/10.1038/srep02558

  • Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  • Beehler-Evans R, Micchelli CA (2015) Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 142:654–664 [PubMed: 25670792]

    Article  CAS  Google Scholar 

  • Béguin P, Lemaire M (1996) The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol 31:201–236

    Article  Google Scholar 

  • Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Am Nat 115:38–146

    Article  Google Scholar 

  • Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833. https://doi.org/10.1371/journal.ppat.1000833

  • Bignell DE (2010) Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary wonderland. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 375–412

    Google Scholar 

  • Boudko DY, Moroz LL, Linser PJ, Trimarchi JR, Smith PJ, Harvey WR (2001) In situ nalysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes. J Exp Biol 204:691–699

    CAS  Google Scholar 

  • Brown BP, Wernegreen JJ (2016) Deep divergence and rapid evolutionary rates in gut associated Acetobacteraceae of ants. BMC Microbiol 16:140. https://doi.org/10.1186/s12866-016-0721-8

  • Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 9(341):667–669

    Article  Google Scholar 

  • Brune A (2010) Methanogens in the digestive tract of termites. (Endo)symbiotic methanogenic archaea. In: Hackstein JHP (ed) Microbiology monographs. Springer, pp 81–100

    Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. https://doi.org/10.1038/nrmicro3182

  • Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166

    Article  CAS  Google Scholar 

  • Brune A, Ohkuma M (2010) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  • Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MWW, Lunin VV et al (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516

    Article  CAS  Google Scholar 

  • Carrasco P, Perez-Cobas AE, van de PC, Baixeras J, Moya A, Latorre A (2014) Succession of the gut microbiota in the cockroach Blattella germanica. Int Microbio 17:99–109. https://doi.org/10.2436/20.1501.01.212

  • Cazemier AE, Verdoes JC, Reubsaet FAG, J. Hackstein HP, Drift C van der, Camp Op den HJM (2003) Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie Leeuwenhoek 83:135–148

    Google Scholar 

  • Chapman AD (2006) Numbers of living species in Australia and the World. Canberra: Aus Biol Res Study. ISBN 978-0-642-56850-2

    Google Scholar 

  • Chapman RF, Simpson SJ, Douglas AE (2013) The insects: structure and function, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Chatterjee S, Sharma S, Prasad RK, Datta S, Dubey D, Meghvansi MK, Vairale MG, Veer V (2015) Cellulase enzyme based biodegradation of cellulosic materials: an overview. South Asian J Exp Biol 5:271–282

    Google Scholar 

  • Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137

    Article  CAS  Google Scholar 

  • Colpa DI, Fraaije MW, Van BE (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41:1–7

    Article  CAS  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119

    Article  CAS  Google Scholar 

  • Davis JR, Goodwin L, Teshima H, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides N, Mavrommatis K, Szeto E, Markowitz V, Ivanova N, Mikhailova N, Ovchinnikova G, Pagani I, Pati A, Woyke T, Pitluck S, Peters L, Nolan M, Land M, Sello JK (2013) Genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a lignin-degrading actinomycete. Genome Announc.1:pii:e00416-13

    Google Scholar 

  • de Gannes V, Eudoxie G, Hickey WJ (2013) Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour Technol 133:573–580

    Article  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  Google Scholar 

  • De Souza WR (2013) Microbial degradation of lignocellulosic biomass. https://doi.org/10.5772/54325

  • Dillon RJ, Dillon VM (2004). The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol 49:71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416

  • Dodd DMB (1989) Reproductive isolation as a consequence of adaptive divergence in Drosophila pseudoobscura. Evolution 43:1308–1311

    Article  Google Scholar 

  • Douglas AE (2011) Lessons from studying insect symbioses. Cell Host Microbe 10(4):359–367. https://doi.org/10.1016/j.chom.2011.09.001

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822

  • Dow JA (1992) pH gradients in lepidopteran midgut. J Exp Biol 172:355–375

    CAS  Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Article  CAS  Google Scholar 

  • Elbert A, Brune A (1997) Hydrogen concentration profiles at the oxicanoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    Google Scholar 

  • Ellegaard KM, Engel P (2016) Beyond 16S rRNA community profiling: intra-species diversity in the gut microbiota. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01475

  • Engel P, Moran NA (2013a) The gut microbiota of insects diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  Google Scholar 

  • Engel P, Moran NA (2013b) Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4:60–65

    Article  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Fischer R, Ostafe R, Twyman RM (2013) Cellulases from insects. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2013_206

  • Friberg U, Miller PM, Stewart AD, Rice WR (2011) Mechanisms promoting the long-term persistence of a Wolbachia infection in a laboratory-adapted population of Drosophila melanogaster. PloS One6:e16448. https://doi.org/10.1371/journal.pone.0016448

  • Fukatsu T, Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol 68:389–396. https://doi.org/10.1128/AEM.68.1

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375

    Article  Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohyd Polym 84:1103–1109

    Article  CAS  Google Scholar 

  • Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087. https://doi.org/10.1038/nmicrobiol.2017.87

  • Harrison JF (2001) Insect acid-base physiology. Annu Rev Entomol 46:221–250 [PubMed:11112169]

    Article  CAS  Google Scholar 

  • Hernández N, Escudero JA, Millán AS, González-Zorn B, Lobo JM, Verdú JR, Suárez M (2013) Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus Jeckel. Insect Sci. https://doi.org/10.1111/1744-7917.12094

  • Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74:1145–1151

    Article  CAS  Google Scholar 

  • Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4(10):e337

    Article  Google Scholar 

  • Huang JH, Jinga X, Douglas AE (2015) The multi-tasking gut epithelium of insects. Insect Biochem Mol Biol 67:15–20. https://doi.org/10.1016/j.ibmb.2015.05.004

  • Hyun JH, Woon RS, Woong WT, Ja JM, Soo KM, Sang PD, Changmann Y, Do NY, Ji KH, Hye CJ, Yong KJ, Ri SN, Hee KS, Jae LW, Woo BJ (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Env Microbiol 80(17):5254–5264

    Article  Google Scholar 

  • Ihssen J, Reiss R, Luchsinger R, Thöny-Meyer L, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep 5:10465

    Article  CAS  Google Scholar 

  • Irfan M, Safdar A, Syed Q, Nadeem M (2012) Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk J Biochem 37:287–293

    Article  CAS  Google Scholar 

  • Kohler T, Dietrich C, Scheffrahn RH, Brune A (2012) High resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701

    Google Scholar 

  • Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    Article  CAS  Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236

    Article  Google Scholar 

  • Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T (2009) Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7:2. http://www.biomedcentral.com/1741-7007/7/2

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  Google Scholar 

  • Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P (2014) Insect gut microbiome—an unexploited reserve for biotechnological application. Asian Pacific J Trop Biomed 4(Suppl 1):S16–S21

    Article  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res Article ID 280696. https://doi.org/10.4061/2011/20696

  • Kuraishi T, Hori A, Kurata S (2013a) Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol 4:375

    Article  Google Scholar 

  • Kuraishi T, Hori A, Kurata S (2013b) Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol 17. https://doi.org/10.3389/fphys.2013.00375

  • Kwong WK, Moran NA (2015) Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes 6(3):214–220

    Article  Google Scholar 

  • Lambertz C, Ece S, Fischer R, Commandeur U (2016) Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 7:145–154

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24 PubMed PMID: 9246788

    Article  CAS  Google Scholar 

  • Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69(11):6650–6658

    Article  CAS  Google Scholar 

  • Li H, Yelled DJ, Lie C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Mo X, Ralph J, Currie CR, Mo J, Liang S (2017). www.pnas.org/lookup/suppl. https://doi.org/10.1073/pnas.1618360114/-/DCSupplemental

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Lize A, McKay R, Lewis Z (2014) Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J 8:469–477

    Article  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  Google Scholar 

  • Marianes A, Spradling AC, Brand A (2013) Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2:e00886 [PubMed: 23991285]

    Article  Google Scholar 

  • Martin M (1983) Cellulose digestion in insects. Comp Biochem Physiol 75 A:313–324

    Google Scholar 

  • Mikaelyan A, Dietrich C, Kohler T, Poulsen M, Sillam DD, Brune A (2015) Diet is the primary determinant of bacterial community structure inthe guts of higher termites. Mol Ecol 24(20):5284–5295. https://doi.org/10.1111/mec.13376

  • Mikaelyan A, Meuser K and Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 93:fiw210. https://doi.org/10.1093/femsec/fiw210

  • Min K, Gong G, Woo HM, Kim Y, Um Y (2015) A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep 5:8245

    Article  CAS  Google Scholar 

  • Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites Vectors 6:146

    Article  Google Scholar 

  • Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38:29–32

    Article  CAS  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den HAF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue; Chikungunya; and Plasmodium. Cell 139:1268–1278

    Google Scholar 

  • Mrázek J, Strosová L, Fliegerová K, Kott T, Kopecný J (2008) Diversity of insect intestinal microflora. Folia Microbiol (Praha) 53:229–233. https://doi.org/10.1007/s12223-008-0032-z

  • Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Ins Physiol 48:751–763. https://doi.org/10.1016/S0022-1910(02)00105-1

  • Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714. https://doi.org/10.1093/gbe/evr064

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nannocrystalline cellulose and its derivatives: a nanotechnology prospective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  • Pernice M, Simpson JS, Ponton F (2014) Towards an integrated understanding of gut microbiota using insects as model systems. J Insect Physiol 69:12–18

    Article  CAS  Google Scholar 

  • Pesek J, Buchler R, Albrecht R, Boland W, Zeth K (2011) Structure and mechanism of iron translocation by a Dps protein from Microbacterium arborescens. J Biol Chem 286. https://doi.org/10.1074/jbc.M111.246108

  • Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1(6):551–565

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddiy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller P, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyan CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  Google Scholar 

  • Reeson AF, Jankovic T, Kasper ML, Rogers S, Austin AD (2003) Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol Biol 12:85–91. https://doi.org/10.1046/j.1365-2583.2003.00390.x

  • Rosengaus RB, Zecher CN, Schultheis KF, Brucker RM, Bordenstein SR (2011) Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol 77:4303–4312

    Article  CAS  Google Scholar 

  • Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71:7987–7994

    Article  CAS  Google Scholar 

  • Saini JK, Tewari L, Saini R (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

  • Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156

    Article  CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  Google Scholar 

  • Santos A, Mendes S, Brissos B, Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 98:2053–2065

    Article  CAS  Google Scholar 

  • Sari SLA, Pangastuti A, Susilowati A, Purwoko T, Mahajoeno E, Hidayat W, Mardhena I, Panuntun DF, Kurniawati D, Anitasari R (2016) Cellulolytic and hemicellulolytic bacteria from the gut of Oryctes rhinoceros larvae. Biodiversitas 17:78–83

    Article  Google Scholar 

  • Scharf ME, Karl ZJ, Sethi A, Boucias DG (2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PloS One 6:e21709. https://doi.org/10.1371/journal.pone.0021709

  • Shaikh NM, Patel AA, Mehta SA, Patel ND (2013) Isolation and screening of cellulolytic bacteria in habiting different environment and optimization of cellulase production. Univ J Environ Res Technol 3(1):39–49

    CAS  Google Scholar 

  • Sharada R, Venkateswarlu G, Venkateswar S, Anand RM (2014) Applications of cellulases—review. Int J Pharmac Chem Biolog Sci 4(2):424–437

    Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056

    Article  CAS  Google Scholar 

  • Shil RK, Mojumder S, Sadida FF, Uddin M, Sikdar D (2014) Isolation and identification of cellulolytic bacteria from the gut of three Phytophagus insect species. Braz Arch Biol Tech 57(6):927–932. https://doi.org/10.1590/S1516-8913201402620

  • Simpson SJ, Clissold FJ, Lihoreau M, Ponton F, Wilder SM, Raubenheimer D (2015) Recent advances in the integrative nutrition of arthropods. Annu Rev Entomol 60:293–311 [PubMed: 25341097]

    Article  CAS  Google Scholar 

  • Singh R, Eltis LD (2015) The multihued palette of dye-decolorizing peroxidases. Arch Biochem Biophys 574:56–65

    Article  CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K. International Publishing House, New Delhi, India, pp 345–358

    Google Scholar 

  • Spring JH, Robichaux SR, Hamlin JA (2009) The role of aquaporins in excretion in insects. J Exp Biol 212:358–362 [PubMed: 19151210]

    Article  CAS  Google Scholar 

  • Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. M Bio 7(2):e00083. https://doi.org/10.1128/mBio.00083-16

  • Su LH, Zhao S, Jiang SX, Liao XZ, Duan CJ, Feng JX (2017) Cellulase with high β-glucosidase activity by Penicillium oxalicum under solid state fermentation and its use in hydrolysis of cassava residue. World J Microbiol Biotechnol 33(2):37

    Article  Google Scholar 

  • Sudakaran S, Retz F, Kikuchi Y, Kost C, Kaltenpoth M (2015) Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME J 9:2587–2604

    Article  Google Scholar 

  • Sun JZ, Scharf ME (2010) Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci 17:163–165

    Article  Google Scholar 

  • Taggar MS (2015) Insect cellulolytic enzymes: novel sources for degradation of lignocellulosic biomass. J Appl and Nat Sci 7(2):625–630

    CAS  Google Scholar 

  • Thomas L, Crawford DL (1998) Cloning of clustered Streptomyces viridosporus T7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris. Can J Microbiol 44:364–372

    Article  CAS  Google Scholar 

  • Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544

    Article  CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H (2005) Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol Entomol 30:372–380

    CAS  Google Scholar 

  • Van Bloois E, DE Torres Pazmi, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    Article  Google Scholar 

  • Vandenbossche V, Brault J, Vilarem Gérard, Hernández-Meléndez Oscar, Vivaldo-Lima Eduardo, Hernández-Luna Martín, Barzana Eduardo, Duque Aleta, Manzanares Paloma, Ballesteros Mercedes, Mata Julio, Castellón Erick, Rigal Luc (2014) A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Ind Crops Prod 55:258–266

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  • Ventorino V, Aliberti A, Faraco V, Robertiello A, Giacobbe S, Ercolini D, Amore A, Fagnano M, Pepe O (2015) Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep 5:8161. https://doi.org/10.1038/srep08161

  • Wang ZM, Bleakley BH, Crawford DL, Hertel G, Rafii F (1990) Cloning and overexpression of a lignin peroxidase gene from Streptomyces viridosporus in Streptomyces lividans. J Biotechnol 13:131–144

    Article  CAS  Google Scholar 

  • Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6:e24767. https://doi.org/10.1371/journal.pone.0024767

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N (2007) Metagenomic and functional analysis of hindgut microbiota of a wood feedinghigher termite. Nature 450:560–565

    Article  CAS  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  CAS  Google Scholar 

  • Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–169

    Article  Google Scholar 

  • Willis JD, Oppert C, Jurat-Fuentes JL (2010) Methods for discovery and characterization of cellulolytic enzymes from insects. Insect Sci 17:184–198

    Article  CAS  Google Scholar 

  • Wongputtisin P, Khanongnuch C, Kongbuntad W, Niamsup P, Lumyong S, Sarkar PK (2014) Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application. Lett Appl Microbiol. 59(3):328–333. https://doi.org/10.1111/lam.12279

  • Ye YH, Woolfit M, Rancès E, O’Neill SL, McGraw EA (2013) Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis 7:e2362

    Article  Google Scholar 

  • Yoshida T, Sugano Y (2015) A structural and functional perspective of DyP-type peroxidase family. Arch Biochem Biophys 574:49–55

    Article  CAS  Google Scholar 

  • Yu W, Liu W, Huang H, Zheng F, Wang X, Wu Y, Li K, Xie X, Jin Y (2014) Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. Plos One 9:e110319-e

    Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley

    Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7:e38544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge Director, DRL, and DRDO for fellowship to RKP for kind support to carry out the work. Authors’ sincerely apologies many colleagues and their scientific publications that could not been referred here due to space limitation. Further, authors declare there is no conflict of interest present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, R.K., Chatterjee, S., Sharma, S., Mazumder, P.B., Vairale, M.G., Raju, P.S. (2018). Insect Gut Bacteria and Their Potential Application in Degradation of Lignocellulosic Biomass: A Review. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_14

Download citation

Publish with us

Policies and ethics