Skip to main content

Strategies of Bioremediation of Heavy Metal Pollutants Toward Sustainable Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture towards Food Security

Abstract

Heavy metals are toxic and hazardous materials to the environment, and production of agricultural products is declined at acute level. The toxic heavy metals are released from various natural and anthropogenic effects like industrialization. Hence, the removing of toxic elements from the environment is key focus in recent scientific scenario. Various methods of removal have been developed since a decade in which phytoremediation is the use of biological interventions of biodiversity for mitigation of the noxious effects caused by environmental pollutants, aid to the cleansing and facilitating to sustain the agriculture. In this review the following techniques and strategies of phytoremediation are discussed such as phytosequestration, phytodegradation, phytovolatilization, phytostabilization, phytoremediation, phytoextraction, rhizofiltration, rhizoremediation, rhizodeposition, and phytohydraulics to remove the heavy metal pollution in contaminated sites including agricultural lands using plants integrating with ecosystem service providers for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 11:020. https://doi.org/10.1016/j.arabjc

    Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Chaney RL (1998) Metal speciation and interactions among elements affect trace element transfer in agricultural and environmental food-chains. Lewis publishers, Chelsea

    Google Scholar 

  • Chen YH, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Shang QT, Wilson AM et al (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian cytochrome P450 2E1. Pro Nat Acad Sci USA 97:6287–6291

    Article  CAS  Google Scholar 

  • Dushenkov S, Kapulnik Y (2000) Phytofilitration of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals – Using plants to clean-up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H et al (1995) “Rhizofiltration”: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  • Fang Y, Cao X, Zhao L (2012) Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environ Sci Pollut Res 19:1659–1667

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BM, Hunag XD, Gurska Y et al (2006) Successful field tests of a multi process phytoremediation system for decontamination of persistent petroleum and organic contaminants. Proceedings of the twenty ninth Artic and marine oil spill program (AMOP), Canada, pp 389–400

    Google Scholar 

  • Hawumba JF, Seruwagi P, Hung YT et al (2010) Bioremediation. In: Wang LK, Tay JH, Hung YT (eds) Handbook of environmental engineering. Springer, Dordrecht

    Google Scholar 

  • Interstate Technology and Guidance Regulatory Council (2009) Phytotechnology technical and regulatory guidance and decision trees. Revised February 2009. Prepared by The Interstate Technology & Regulatory Council Phytotechnologies Team, Tech Reg Update

    Google Scholar 

  • Jan AS, Roels HA, Emelianov D et al (1999) Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study for the public health and environmental exposure to cadmium. Lancet 353(9159):1140–1144

    Article  Google Scholar 

  • Kamaludeen SP, Arunkumar KR, Avudainayagam S et al (2003) Bioremediation of chromium contaminated environments. Ind J Exper Biolo 41:972–985

    CAS  Google Scholar 

  • Keating MH, Mahaffey KR, Schoeny R et al (1997) Mercury study report to congress. EPA 452/R-9-003

    Google Scholar 

  • Kingsley MT, Fredrickson JK, Metting FB et al (1994) Environmental restoration using plant-microbe bioaugmentation. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polyaromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, pp 287–292

    Google Scholar 

  • Krebs R, Gupta SK, Furrer G, Schulin R (1999) Gravel sludge as an immobilizing agent in soils contaminated by heavy metals – a field study. Water Air Soil Pollut 115:465–479

    Article  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV et al (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Kundu NK, Ghose MK (1997) Soil profile characteristic in Rajmahal Coalfield area. Soil Water Conser 25(1):28–32

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ et al (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli N, Marmiroli M, Maestri E (2006) Phytoremediation and phytotechnologies: a review for the present and the future. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation. Springer, Dordrecht, pp 403–416

    Chapter  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–221

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB et al (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62(1):78–85

    Article  CAS  Google Scholar 

  • National Ground Water Association (2001) Copyright 2001. Arsenic

    Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annual Rev Phys 59(1):171–191

    Article  CAS  Google Scholar 

  • Peng KJ, Luo CL, Chen YH et al (2009) Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils. Environ Contam Tox 83:260–264

    Article  CAS  Google Scholar 

  • Porter SK, Scheckel KG, Impellitteri CA, Ryan JA (2004) Toxic metals in the environment: thermodynamic considerations for possible immobilisation strategies for Pb, Cd, As, and Hg. Crit Rev Environ Sci Technol 34:495–604

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Plant Biotechnol 8:221–226

    CAS  Google Scholar 

  • Rugh CL, Wilde D, Stack NM et al (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab AP, Banks MK, Arunachalam M (1995) Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil. In: Hinchee RE, Anderson DB, Hoeppel RE (eds) Bioremediation of recalcitrant organics. Battelle Memorial Institute, Columbus, pp 23–29

    Google Scholar 

  • Sridhar S, Victor FM, Steven CMC (2002) “Phytoremediation”: an ecological solution to organic chemical contamination. Ecolog Eng 18:647–658

    Article  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P et al (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Google Scholar 

  • Sun H, Xu J, Yang S et al (2004) Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosph 54(4):569–574

    Google Scholar 

  • Thayalakumaran I, Vogeler DR, Scotter HJ et al (2003) Leaching of copper from contaminated soil following the application of EDTA. II. Intact core experiments and model testing. Aust J Soil Res 41:335–350

    Article  CAS  Google Scholar 

  • U. S. Department of Energy (1994) Plume focus area, December. Mechanisms of plant uptake, translocation, and storage of toxic elements. Summary report of a workshop on phytoremediation research needs

    Google Scholar 

  • U. S. Environmental Protection Agency (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107

    Google Scholar 

  • Xu H, Chen Y, Huang H et al (2013) Removal of lead(II) and cadmium (II) from aqueous solutions using spent Agaricus bisporus. Can J Chem Eng 91(3):421–431

    Google Scholar 

  • Yu Y, Chen YX, Luo YM et al (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosph 50(6):771–774

    Google Scholar 

  • Zhang H, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.) Int J Environ Sci Tech 6:249–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhanam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanam, S. (2017). Strategies of Bioremediation of Heavy Metal Pollutants Toward Sustainable Agriculture. In: Dhanarajan, A. (eds) Sustainable Agriculture towards Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-6647-4_18

Download citation

Publish with us

Policies and ethics