Skip to main content

Advertisement

Log in

Microbiome response to diet: focus on obesity and related diseases

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Numerous studies in humans and animal models describe disturbances of the gut microbial ecosystem associated with adiposity and hallmarks of the metabolic syndrome, including hepatic and cardiovascular diseases. The manipulation of the microbiome, which is largely influenced by the diet, appears as an innovative therapeutic tool to prevent or control obesity and related diseases. This review describes the impact of nutrients on the gut microbiota composition and/or function and when available, the consequences on host physiology. A special emphasis is made on the contribution of bacterial-derived metabolites in the regulation of key gut functions that may explain their systemic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and Bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Shkoporov AN, Hill C. Bacteriophages of the human gut: the "known unknown" of the microbiome. Cell Host Microbe. 2019;25(2):195–209.

    Article  CAS  PubMed  Google Scholar 

  3. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, Laczny CC, et al. Colonization and succession within the human gut microbiome by Archaea, Bacteria, and microeukaryotes during the first year of life. Front Microbiol. 2017;8:738.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dalile B, van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–78.

    Article  PubMed  Google Scholar 

  8. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ge X, Pan J, Liu Y, Wang H, Zhou W, Wang X. Intestinal crosstalk between microbiota and serotonin and its impact on gut motility. Curr Pharm Biotechnol. 2018;19(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  10. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–24.

    Article  CAS  PubMed  Google Scholar 

  11. Knudsen C, Neyrinck AM, Lanthier N, Delzenne NM. Microbiota and nonalcoholic fatty liver disease: promising prospects for clinical interventions? Curr Opin Clin Nutr Metab Care. 2019;22(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  12. Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu.Rev.Nutr. 2011;31:15–31.

    Article  CAS  PubMed  Google Scholar 

  13. Delzenne, N.M., A.M. Neyrinck, and P.D. Cani, Modulation of the gut microbiota by nutrients with prebiotic properties : consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, 2011. 10 (Su): p. S10 [1-11].

  14. Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia : clinical and experimental diabetes and metabolism. 2015;58(10):2206–17.

    Article  CAS  Google Scholar 

  15. Chavez-Talavera O, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679–94 e3.

    Article  CAS  PubMed  Google Scholar 

  16. Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 2017;22(5):589–99.

    Article  CAS  PubMed  Google Scholar 

  17. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.

    Article  CAS  PubMed  Google Scholar 

  18. van den Munckhof ICL, Kurilshikov A, ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev. 2018;19(12):1719–34.

    Article  PubMed  Google Scholar 

  19. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.

    Article  PubMed  CAS  Google Scholar 

  20. de Groot P, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. 2019.

  21. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588(22):4223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sze MA, Schloss PD. Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. MBio. 2016;7((4)).

  23. Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9(1):e84689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):1784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kim KN, Yao Y, Ju SY. Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and Meta-Analysis. Nutrients. 2019;11((10)).

  26. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  27. Castaner O, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:4095789.

    PubMed  PubMed Central  Google Scholar 

  28. Cotillard A, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–41.

    Article  CAS  PubMed  Google Scholar 

  31. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5.

    Article  CAS  PubMed  Google Scholar 

  32. Klingbeil E, de La Serre CB. Microbiota modulation by eating patterns and diet composition: impact on food intake. Am J Physiol Regul Integr Comp Physiol. 2018;315(6):R1254–60.

    Article  CAS  PubMed  Google Scholar 

  33. Neyrinck AM. Schü, Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models? Trends Food Sci Technol. 2016;57:256–64.

    Article  CAS  Google Scholar 

  34. Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017;8(2):130–42.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P, Vassallo J, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–34.

    Article  CAS  PubMed  Google Scholar 

  36. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295–308.

    Article  CAS  PubMed  Google Scholar 

  37. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–36.

    Article  CAS  PubMed  Google Scholar 

  39. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73(4):1073–8.

    Article  CAS  PubMed  Google Scholar 

  40. Fabbiano S, Suárez-Zamorano N, Chevalier C, Lazarević V, Kieser S, Rigo D, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 2018;28(6):907–21 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jensen, M.D., et al., 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol, 2014. 63(25 Pt B): p. 2985-3023.

  42. Aleman JO, et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. J Transl Med. 2018;16(1):244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Angelis M, et al. The food-gut human Axis: the effects of diet on gut microbiota and Metabolome. Curr Med Chem. 2019;26(19):3567–83.

    Article  PubMed  CAS  Google Scholar 

  44. Statovci D, Aguilera M, MacSharry J, Melgar S. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol. 2017;8:838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Filippis F, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21.

    Article  CAS  PubMed  Google Scholar 

  48. Luisi MLE, et al. Effect of Mediterranean diet enriched in high quality extra virgin olive oil on oxidative stress Inflammation and Gut Microbiota in Obese and Normal Weight Adult Subjects. Front Pharmacol. 2019;10:1366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang F, Wan Y, Yin K, Wei Y, Wang B, Yu X, et al. Lower circulating branched-chain amino acid concentrations among vegetarians are associated with changes in gut microbial composition and function. Mol Nutr Food Res. 2019;63(24):e1900612.

    Article  PubMed  CAS  Google Scholar 

  50. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  51. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016;101(1):233–42.

    Article  CAS  PubMed  Google Scholar 

  52. Haro C, et al. Consumption of Two Healthy Dietary Patterns Restored Microbiota Dysbiosis in Obese Patients with Metabolic Dysfunction. Mol Nutr Food Res. 2017;61((12)).

  53. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    Article  CAS  PubMed  Google Scholar 

  54. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  55. Monk JM, Wu W, Lepp D, Wellings HR, Hutchinson AL, Liddle DM, et al. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J Nutr Biochem. 2019;70:91–104.

    Article  CAS  PubMed  Google Scholar 

  56. Li CC, Liu C, Fu M, Hu KQ, Aizawa K, Takahashi S, et al. Tomato powder inhibits hepatic Steatosis and inflammation potentially through restoring SIRT1 activity and Adiponectin function independent of carotenoid cleavage enzymes in mice. Mol Nutr Food Res. 2018;62(8):e1700738.

    Article  PubMed  CAS  Google Scholar 

  57. Marungruang N, et al. Lingonberries and their two separated fractions differently alter the gut microbiota, improve metabolic functions, reduce gut inflammatory properties, and improve brain function in ApoE−/− mice fed high-fat diet. Nutr Neurosci. 2018:1–13.

  58. Matziouridou C, Marungruang N, Nguyen TD, Nyman M, Fåk F. Lingonberries reduce atherosclerosis in Apoe(−/−) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res. 2016;60(5):1150–60.

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Mazcorro JF, Lage NN, Mertens-Talcott S, Talcott S, Chew B, Dowd SE, et al. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ. 2018;6:e4195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Heyman-Linden L, et al. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr Res. 2016;60:29993.

    Article  PubMed  CAS  Google Scholar 

  61. Delzenne NM, et al. Nutritional interest of dietary fiber and prebiotics in obesity: lessons from the MyNewGut consortium. Clin Nutr. 2019.

  62. Jefferson A, Adolphus K. The effects of intact cereal grain fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front Nutr. 2019;6:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502.

    Article  PubMed  Google Scholar 

  64. Nie Q, et al. Effects of Nondigestible Oligosaccharides on Obesity. In:Effects of nondigestible oligosaccharides on obesity. Annu Rev Food Sci Technol; 2020.

    Chapter  Google Scholar 

  65. Le Bastard Q, et al. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. Eur J Clin Microbiol Infect Dis. 2019.

  66. Julie Rodriguez SH, Neyrinck AM, Le Roy T, Potgens SA, Leyrolle Q, Pachikian BD, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut.(in press).

  67. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lam YY, Ha CWY, Hoffmann JMA, Oscarsson J, Dinudom A, Mather TJ, et al. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring). 2015;23(7):1429–39.

    Article  CAS  Google Scholar 

  70. Pachikian BD, Neyrinck AM, Cani PD, Portois L, Deldicque L, de Backer FC, et al. Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition. BMC Physiol. 2008;8:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pachikian BD, Neyrinck AM, Portois L, de Backer FC, Sohet FM, Hacquebard M, et al. Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice. Nutr Metab (Lond). 2011;8(1):44.

    Article  CAS  Google Scholar 

  72. Druart C, Dewulf EM, Cani PD, Neyrinck AM, Thissen JP, Delzenne NM. Gut microbial metabolites of polyunsaturated fatty acids correlate with specific fecal bacteria and serum markers of metabolic syndrome in obese women. Lipids. 2014;49(4):397–402.

    Article  CAS  PubMed  Google Scholar 

  73. Wolters M, Ahrens J, Romaní-Pérez M, Watkins C, Sanz Y, Benítez-Páez A, et al. Dietary fat, the gut microbiota, and metabolic health - a systematic review conducted within the MyNewGut project. Clin Nutr. 2019;38(6):2504–20.

    Article  PubMed  Google Scholar 

  74. Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet(−)Microbe(−)Host Interaction. Microorganisms. 2019:7(1).

  75. Evenepoel P, et al. Amount and fate of egg protein escaping assimilation in the small intestine of humans. Am J Phys. 1999;277(5):G935–43.

    CAS  Google Scholar 

  76. Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007;33(4):547–62.

    Article  CAS  PubMed  Google Scholar 

  77. Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res Microbiol. 2016;167(2):114–25.

    Article  CAS  PubMed  Google Scholar 

  78. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017;106(4):1005–19.

    Article  CAS  PubMed  Google Scholar 

  79. Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93(5):1062–72.

    Article  CAS  PubMed  Google Scholar 

  80. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.

    Article  CAS  PubMed  Google Scholar 

  81. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carrera-Quintanar L, et al. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat Inflamm. 2018;2018:9734845.

    Article  CAS  Google Scholar 

  84. Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota. J Physiol Pharmacol. 2012;63(5):497–503.

    CAS  PubMed  Google Scholar 

  85. Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev. 2016;17(7):573–86.

    Article  CAS  PubMed  Google Scholar 

  86. Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, de la Torre R, Corella D, et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis. 2014;24(6):639–47.

    Article  CAS  PubMed  Google Scholar 

  87. Noratto GD, Garcia-Mazcorro JF, Markel M, Martino HS, Minamoto Y, Steiner JM, et al. Carbohydrate-free peach (Prunus persica) and plum (Prunus salicina) [corrected] juice affects fecal microbial ecology in an obese animal model. PLoS One. 2014;9(7):e101723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Anhe FF, et al. Gut microbiota Dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep. 2015;4(4):389–400.

    Article  PubMed  Google Scholar 

  89. Koh A, de Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary Fiber to host physiology: short-chain fatty Acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.

    Article  CAS  PubMed  Google Scholar 

  90. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018;596(20):4923–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015;28(1):42–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delzenne NM, Knudsen C, Beaumont M, Rodriguez J, Neyrinck AM, Bindels LB. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis. Proc Nutr Soc. 2019;78(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  93. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–91.

    Article  CAS  PubMed  Google Scholar 

  94. Yamashita H, et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka long-Evans Tokushima fatty (OLETF) rats. Biosci Biotechnol Biochem. 2009;73(3):570–6.

    Article  CAS  PubMed  Google Scholar 

  95. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed  CAS  Google Scholar 

  96. Layden BT, Yalamanchi SK, Wolever TM, Dunaif A, Lowe WL Jr. Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab Syndr Obes. 2012;5:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  CAS  PubMed  Google Scholar 

  98. Weitkunat K, Schumann S, Nickel D, Kappo KA, Petzke KJ, Kipp AP, et al. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol Nutr Food Res. 2016;60(12):2611–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014;24(5):313–20.

    Article  CAS  PubMed  Google Scholar 

  101. De Vadder F, et al. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016;24(1):151–7.

    Article  PubMed  CAS  Google Scholar 

  102. Deroover L, et al. Wheat Bran Does Not Affect Postprandial Plasma Short-Chain Fatty Acids from (13)C-inulin Fermentation in Healthy Subjects. Nutrients. 2017;9((1)).

  103. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.

    Article  CAS  PubMed  Google Scholar 

  104. Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018;175(4):947–61 e17.

    Article  CAS  PubMed  Google Scholar 

  105. Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Roediger WE, Babidge W. Human colonocyte detoxification. Gut. 1997;41(6):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009;101(10):1493–502.

    Article  CAS  PubMed  Google Scholar 

  108. Beaumont M, et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 2018:fj201800544.

  109. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  110. Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X, Yamada K, et al. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med. 2015;85:219–27.

    Article  CAS  PubMed  Google Scholar 

  111. Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin JM, et al. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radic Biol Med. 2016;93:155–64.

    Article  CAS  PubMed  Google Scholar 

  112. Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018;23(4):1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vincent RP, Omar S, Ghozlan S, Taylor DR, Cross G, Sherwood RA, et al. Higher circulating bile acid concentrations in obese patients with type 2 diabetes. Ann Clin Biochem. 2013;50(Pt 4):360–4.

    Article  PubMed  CAS  Google Scholar 

  114. Janssen AWF, Houben T, Katiraei S, Dijk W, Boutens L, van der Bolt N, et al. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. J Lipid Res. 2017;58(7):1399–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martínez I, Salazar N, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome. 2017;5(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhang Y, et al. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Sci Rep. 2014;4:5654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Precup G, Vodnar DC. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr. 2019;122(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  118. Hjorth MF, Blædel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes. 2019;43(1):149–57.

    Article  CAS  Google Scholar 

  119. Baldwin J, Collins B, Wolf PG, Martinez K, Shen W, Chuang CC, et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem. 2016;27:123–35.

    Article  CAS  PubMed  Google Scholar 

  120. Ojo B, el-Rassi GD, Payton ME, Perkins-Veazie P, Clarke S, Smith BJ, et al. Mango supplementation modulates gut microbial Dysbiosis and short-chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high-fat diet. J Nutr. 2016;146(8):1483–91.

    Article  CAS  PubMed  Google Scholar 

  121. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary Fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–53 e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes. 2015;64(8):2847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.

    Article  Google Scholar 

  124. Salazar, N., et al., Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr, 2015. 34(3):501–7

  125. Neyrinck, A.M., The FiberTAG project: Tagging dietary fiber intake by measuring biomarkers related to the gut microbiota and their interest for health Nutrition Bulletin.

  126. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, Pujos-Guillot E, et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 2015;22(2):320–31.

  127. Han Y, Xiao H. Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. In:Whole food-based approaches to modulating gut microbiota and associated diseases. Annu Rev Food Sci Technol; 2020.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie M. Delzenne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delzenne, N.M., Rodriguez, J., Olivares, M. et al. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord 21, 369–380 (2020). https://doi.org/10.1007/s11154-020-09572-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09572-7

Keywords

Navigation