Skip to main content

Advertisement

Log in

Targeting the vitamin D endocrine system (VDES) for the management of inflammatory and malignant skin diseases: An historical view and outlook

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Vitamin D represents one of the major driving factors for the development of life on earth and for human evolution. While up to 10–20 % of the human organism’s requirements in vitamin D can be obtained by the diet (under most living conditions in the USA and Europe), approximately 90 % of all needed vitamin D has to be photosynthesized in the skin through the action of the sun (ultraviolet-B (UV-B)). The skin represents a key organ of the human body’s vitamin D endocrine system (VDES), being both the site of vitamin D synthesis and a target tissue for biologically active vitamin D metabolites. It was shown that human keratinocytes possess the enzymatic machinery (CYP27B1) for the synthesis of the biologically most active natural vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), representing an autonomous vitamin D3 pathway. Cutaneous production of 1,25(OH)2D3 may exert intracrine, autocrine, and paracrine effects on keratinocytes and on neighboring cells. Many skin cells (including keratinocytes, sebocytes, fibroblasts, melanocytes, and skin immune cells) express the vitamin D receptor (VDR), an absolute pre-requisite for the mediation of genomic effects of 1,25(OH)2D3 and analogs. VDR belongs to the superfamily of trans-acting transcriptional regulatory factors, which includes the steroid and thyroid hormone receptors as well as the retinoid X receptors (RXR) and retinoic acid receptors (RAR). Numerous studies, including cDNA microarray analyses of messenger RNAs (mRNAs), indicate that as many as 500–1000 genes may be regulated by VDR ligands that control various cellular functions including growth, differentiation, and apoptosis. The observation that 1,25(OH)2D3 is extremely effective in inducing the terminal differentiation and in inhibiting the proliferation of cultured human keratinocytes has resulted in the use of vitamin D analogs for the treatment of psoriasis. This review gives an historical view and summarizes our present knowledge about the relevance of the VDES for the management of inflammatory and malignant skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mason RS, Reichrath J. Sunlight vitamin D and skin cancer. Anti Cancer Agents Med Chem. 2013;13:83–97. doi:10.2174/187152013804487272.

    Article  CAS  Google Scholar 

  2. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. doi:10.1056/NEJMra070553.

    Article  CAS  PubMed  Google Scholar 

  3. Reichrath J. Vitamin D and the skin: an ancient friend, revisited. Exp Dermatol. 2007;16:618–25.

    Article  CAS  PubMed  Google Scholar 

  4. Saternus R, Pilz S, Gräber S, Kleber M, März W, Vogt T, et al. A closer look at evolution: variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration. Endocrinology. 2015;156:39–47.

    Article  PubMed  Google Scholar 

  5. Rossberg W, Saternus R, Wagenpfeil S, Kleber M, März W, Vogt Th, et al. Skin pigmentation, cutaneous vitamin D synthesis and evolution: variants of genes (SNPs) involved in skin pigmentation are associated with 25(OH)D serum concentration. Anticancer Res. 2016.

  6. Matsumoto K, Azuma Y, Kiyoki M, Okumura H, Hashimoto K, Yoshikawa K. Involvement of endogenously produced 1,25-dihydroxyvitamin D-3 in the growth and differentiation of human keratinocytes. Biochim Biophys Acta. 1991;1092:311–8.

    Article  CAS  PubMed  Google Scholar 

  7. Prystowsky JH, Muzio PJ, Sevran S, Clemens TL. Effect of UVB phototherapy and oral calcitriol (1,25-dihydroxyvitamin D3) on vitamin D photosynthesis in patients with psoriasis. J Am Acad Dermatol. 1996;35:690–5.

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann B, Genehr T, Knuschke P, Pietzsch J, Meurer M. UVB-induced conversion of 7-dehydrocholesterol to 1α,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J Invest Dermatol. 2001;117:1179–85.

    Article  CAS  PubMed  Google Scholar 

  9. Lehmann B, Sauter W, Knuschke P, Dreßler S, Meurer M. Demonstration of UVB-induced synthesis of 1α,25-dihydroxyvitamin D3 (calcitriol) in human skin by microdialysis. Arch Dermatol Res. 2003;295:24–8.

    CAS  PubMed  Google Scholar 

  10. Vatieghem K, Dehaes P, Bouillon R, Segaert S. Cultured fibroblasts produce non-active vitamin D metabolites that can be activated by cultured keratinocytes. In: Abstracts Twelfth Workshop on Vitamin D, July 6-10, 2003, Maastricht, The Netherlands, page 27.

  11. Bittiner B, Bleehen SS, Mac NS. 1α-25-(OH)2 vitamin D3 increases intracellular calcium in human keratinocytes. Br J Dermatol. 1991;124:12230–5.

    Article  Google Scholar 

  12. MacLaughlin JA, Cantley LC, Holick MF. 1,25(OH)2D3 increases calcium and phosphatidylinositol metabolism in differentiating cultured human keratinocytes. J Nutr Biochem. 1990;1:81–7.

    Article  CAS  PubMed  Google Scholar 

  13. Reichrath J, Reichrath S, Heyne K, Vogt T, Roemer K. Tumor suppression in skin and other tissues via cross-talk between vitamin D- and p53-signaling. Front Physiol. 2014;5:166. doi:10.3389/fphys.2014.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77–98. doi:10.1007/s00223-012-9619-0.

    Article  CAS  PubMed  Google Scholar 

  15. Baker AR, Mc Donnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988;85:3294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu VC, Deisert C, Andersen B, Holloway JM, Devary OV, Näär AM, et al. RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone and vitamin D receptors to their cognate response elements. Cell. 1991;67:1251–66.

    Article  CAS  PubMed  Google Scholar 

  17. Heyne K, Heil TC, Bette B, Reichrath J, Roemer K. MDM2 binds and inhibits vitamin D receptor. Cell Cycle. 2015;14(13):2003–10. doi:10.1080/15384101.2015.1044176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Milde P, Hauser U, Simon R, Mall G, Ernst V, Haussler MR, et al. Expression of 1,25-dihydroxyvitamin D3 receptors in normal and psoriatic skin. J Invest Dermatol. 1991;97:230–9.

    Article  CAS  PubMed  Google Scholar 

  19. Reichrath J, Münssinger T, Kerber A, Rochette-Egly C, Chambon P, Bahmer FA, et al. In situ detection of retinoid-X receptor expression in normal and psoriatic human skin. Br J Dermatol. 1995;133:168–75.

    Article  CAS  PubMed  Google Scholar 

  20. Smith EL, Walworth NC, Holick MF. Effect of 1α-25-dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown under serum-free conditions. J Invest Dermatol. 1986;86:709–14.

    Article  CAS  PubMed  Google Scholar 

  21. Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T. Regulation of terminal differentiation of cultured mouse epidermal cells by 1-alpha 25-dihydroxy-vitamin D3. Endocrinol. 1983;113:1950–7.

    Article  CAS  Google Scholar 

  22. Gniadecki R, Serup J. Stimulation of epidermal proliferation in mice with 1 alpha, 25-dihydroxyvitamin D3 and receptor-active 20-EPI analogues of 1 alpha, 25-dihydroxyvitamin D3. Biochem Pharmacol. 1995;49:621–4.

    Article  CAS  PubMed  Google Scholar 

  23. Rigby WFC. The immunobiology of vitamin D. Immunol Today. 1988;9:54–8.

    Article  CAS  PubMed  Google Scholar 

  24. Texereau M, Viac J. Vitamin D, immune system and skin. Eur J Dermatol. 1992;2:258–64.

    CAS  Google Scholar 

  25. Gombard HF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–77.

    Article  Google Scholar 

  26. Wang T-T, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–12.

    Article  CAS  PubMed  Google Scholar 

  27. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.

    Article  CAS  PubMed  Google Scholar 

  28. Ranson M, Posen S, Mason RS. Human melanocytes as a target tissue for hormones: in vitro studies with 1α,25-dihydroxyvitamin D3, alpha-melanocyte stimulating hormone, and beta-estradiol. J Invest Dermatol. 1988;91:593–8.

    Article  CAS  PubMed  Google Scholar 

  29. Krämer C, Seltmann H, Seifert M, Tilgen W, Zouboulis CC, Reichrath J. Characterization of the vitamin D endocrine system in human sebocytes in vitro. J Steroid Biochem Mol Biol. 2009;113(1-2):9–16.

    Article  PubMed  Google Scholar 

  30. MacLaughlin JA, Gange W, Taylor D, Smith E, Holick MF. Cultured psoriatic fibroblasts from involved and uninvolved sites have partial but not absolute resistance to the proliferation-inhibition activity of 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1985;82:5409–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morimoto S, Kumahara Y. A patient with psoriasis cured by 1α-hydroxyvitamin D3. Med J Osaka Univ. 1985;35:3–4. 51-4.

    Google Scholar 

  32. Morimoto S, Yochikawa K, Kozuka T, Kitano Y, Imawaka S, Fukuo K, et al. An open study of vitamin D3 treatment in psoriasis vulgaris. Br J Dermatol. 1986;115:421–9.

    Article  CAS  PubMed  Google Scholar 

  33. Holick MF, Chen ML, Kong XF, Sanan DK. Clinical uses for calciotropic hormones 1,25-dihydroxyvitamin D3 and parathyroid hormone related peptide in dermatology: a new perspective. J Invest Dermatol (Symp Proc). 1996;1:1–9.

    CAS  Google Scholar 

  34. Perez A, Chen TC, Turner A, Raab R, Bhawan J, Poche P, et al. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134:238–46.

    Article  CAS  PubMed  Google Scholar 

  35. Kragballe K, Beck HI, Sogaard H. Improvement of psoriasis by topical vitamin D3 analogue (MC 903) in a double-blind study. Br J Dermatol. 1988;119:223–30.

    Article  CAS  PubMed  Google Scholar 

  36. van de Kerkhof PCM, van Bokhoven M, Zultak M, Czarnetzki BM. A double-blind study of topical 1α-25-dihydroxyvitamin D3 in psoriasis. Br J Dermatol. 1989;120:661–4.

    Article  PubMed  Google Scholar 

  37. Barker JN, Ashton RE, Marks R, Harris RI, Berth-Jones J. Topical maxacalcitol for the treatment of psoriasis vulgaris: a placebo-controlled, double-blind, dose-finding study with active comparator. Br J Dermatol. 1999;141(2):274–8.

    Article  CAS  PubMed  Google Scholar 

  38. Durakovic C, Malabanan A, Holick MF. Rationale for use and clinical responsiveness of hexafluoro-1,25-dihydroxyvitamin D3 for the treatment of plaque psoriasis: a pilot study. Br J Dermatol. 2001;144(3):500–6.

    Article  CAS  PubMed  Google Scholar 

  39. Miyachi Y, Ohkawara A, Ohkido M, Harada S, Tamaki K, Nakagawa H, et al. Long-term safety and efficacy of high-concentration (20 microg/g) tacalcitol ointment in psoriasis vulgaris. Eur J Dermatol. 2002;12(5):463–8.

    CAS  PubMed  Google Scholar 

  40. van de Kerkhof PC, Berth-Jones J, Griffiths CE, Harrison PV, Honigsmann H, Marks R, et al. Long-term efficacy and safety of tacalcitol ointment in patients with chronic plaque psoriasis. Br J Dermatol. 2002;146(3):414–22.

    Article  PubMed  Google Scholar 

  41. Kragballe K, Gjertsen BT, de Hoop D, Karlsmark T, van de Kerhof PCM, Larko O, et al. Double-blind right/left comparison of calcipotriol and betametasone valerate in treatment of psoriasis vulgaris. Lancet. 1991;337:193–6.

    Article  CAS  PubMed  Google Scholar 

  42. Binderup L, Latini S, Binderup E, Bretting C, Calverley M, Hansen K. 20-epi-vitamin D3 analogues: a novel class of potent regulators of cell growth and immune response. Biochem Pharmacol. 1991;42:1569–75.

    Article  CAS  PubMed  Google Scholar 

  43. Queille-Roussel C, Duteil L, Parneix-Spake A, Arsonnaud S, Rizova E. The safety of calcitriol 3 microg/g ointment. Evaluation of cutaneous contact sensitization, cumulative irritancy, photoallergic contact sensitization and phototoxicity. Eur J Dermatol. 2001;11(3):219–24.

    CAS  PubMed  Google Scholar 

  44. Perez A, Raab R, Chen TC, Turner A, Holick MF. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134:1070–8.

    Article  CAS  PubMed  Google Scholar 

  45. Reichrath J, Müller SM, Kerber A, Baum HP, Bahmer FA. Biologic effects of topical calcipotriol (MC 903) treatment in psoriatic skin. J Am Acad Dermatol. 1997;36:19–28.

    Article  CAS  PubMed  Google Scholar 

  46. Chen ML, Perez A, Sanan DK, Heinrich G, Chen TC, Holick MF. Induction of vitamin D receptor mRNA expression in psoriatic plaques correlates with clinical response to 1,25-dihydroxyvitamin D3. J Invest Dermatol. 1996;106:637–41.

    Article  CAS  PubMed  Google Scholar 

  47. Missero C, Calautti E, Eckner R, Chin J, Tsai LH, Livingston DM, et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associaated p300 protein in terminal differentiation. Proc Natl Acad Sci U S A. 1995;92:5451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dayangac-Erden D, Karaduman A, Erdem-Yurter H. Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients. Arch Dermatol Res. 2007;299(10):487–91.

    Article  CAS  PubMed  Google Scholar 

  49. Okita H, Ohtsuka T, Yamakage A, Yamazaki S. Polymorphism of the vitamin D(3) receptor in patients with psoriasis. Arch Dermatol Res. 2002;294(4):159–62.

    Article  CAS  PubMed  Google Scholar 

  50. Park BS, Park JS, Lee DY, Youn JI, Kim IG. Vitamin D receptor polymorphism is associated with psoriasis. J Investig Dermatol. 1999;112(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  51. Saeki H, Asano N, Tsunemi Y, Takekoshi T, Kishimoto M, Mitsui H, et al. Polymorphisms of vitamin D receptor gene in Japanese patients with psoriasis vulgaris. J Dermatol Sci. 2002;30(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  52. Lee DY, Park BS, Choi KH, Jeon JH, Cho KH, Song KY, et al. Vitamin D receptor genotypes are not associated with clinical response to calcipotriol in Korean psoriasis patients. Arch Dermatol Res. 2002;294(1-2):1–5.

    Article  CAS  PubMed  Google Scholar 

  53. Kontula K, Välimäki S, Kainulainen K, Viitanen AM, Keski-Oja J. Vitamin D receptor polymorphism and treatment of psoriasis with calcipotriol. Br J Dermatol. 1997;136:147–8.

    Article  Google Scholar 

  54. Mee JB, Cork MJ. Vitamin D receptor polymorphism and calcipotriol response in patients with psoriasis. J Invest Dermatol. 1998;110:301–2.

    Article  CAS  PubMed  Google Scholar 

  55. Colin EM, Weel AEAM, Uitterlinden AG, Buurman CJ, Birkenhäger JC, Pols HAP, et al. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D3. Clin Endocrinol. 2000;52:211–6.

    Article  CAS  Google Scholar 

  56. Staberg B, Oxholm A, Klemp P, Christiansen C. Abnormal vitamin D metabolism in patients with psoriasis. Acta Derm Venereol. 1987;67(1):65–8.

    CAS  PubMed  Google Scholar 

  57. Stewart AF, Battaglini-Sabetta J, Millstone L. Hypocalcemia-induced pustular psoriasis of von Zumbusch. New experience with an old syndrome. Ann Intern Med. 1984;100(5):677–80.

    Article  CAS  PubMed  Google Scholar 

  58. Stone OJ. Chloroquine, ground substance, aggravation of psoriasis. Int J Dermatol. 1985;24(8):539.

    Article  CAS  PubMed  Google Scholar 

  59. Lucker GP, van de Kerkhof PC, van Dijk MR, Steijlen PM. Effect of topical calcipotriol on congenital ichthyosis. Br J Dermatol. 1994;131:546–50.

    Article  CAS  PubMed  Google Scholar 

  60. Okano M. Assessment of the clinical effect of topical tacalcitol on ichthyoses with retentive hyperkeratosis. Dermatology. 2001;202(2):116–8.

    Article  CAS  PubMed  Google Scholar 

  61. Humbert P, Dupond JL, Agache P, Laurent R, Rochefort A, Drobacheff C, et al. Treatment of scleroderma with oral 1,25-dihydroxyvitamin D3: evaluation of skin involvement using non-invasive techniques. Results of an open prospective trial. Acta Derm Venereol (Stockh). 1993;73:449–51.

    CAS  Google Scholar 

  62. Garnier G. Vitamin D2 in treatment of acne conglobata. Arch Belg Dermatol Syphiligr. 1964;20:105–8.

    CAS  PubMed  Google Scholar 

  63. Cerri B. Attempted therapy for lupus vulgaris and juvenile acne with provitamins of the D group. Minerva Dermatol. 1952;27(3):53–7.

    CAS  PubMed  Google Scholar 

  64. Maynard MT. Vitamin D in acne: a comparison with X-ray treatment. Cal West Med. 1938;49(2):127–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Agak GW, Qin M, Nobe J, Kim MH, Krutzik SR, Tristan GR, et al. Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol. 2014;134(2):366–73. doi:10.1038/jid.2013.334.

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi N, Watanabe H, Yasukawa H, Uratsuji H, Kanazawa H, Ishimaru M, et al. Comedolytic effect of topically applied active vitamin D3 analogue on pseudocomedones in the rhino mouse. Br J Dermatol. 2006;155(5):895–901.

    Article  CAS  PubMed  Google Scholar 

  67. Schauber J. Antimicrobial peptides, vitamin D3 and more. How rosacea may develop. Hautarzt. 2011;62(11):815–9. doi:10.1007/s00105-011-2142-9.

    Article  CAS  PubMed  Google Scholar 

  68. Heilborn JD, Weber G, Grönberg A, Dieterich. Topical treatment with the vitamin D analogue calcipotriol enhances the upregulation of the antimicrobial protein hCAP18/LL-37 during wounding in human skin in vivo. Exp Dermatol. 2009.

  69. Reichrath J, Holick MF. Clinical utility of 1,25-dihydroxyvitamin D3 and its analogs for the treatment of psoriasis and other skin diseases. In: Holick MF, editor. Vitamin D. Physiology, molecular biology and clinical applications. New Jersey: Humana Press Totowa; 1999. p. 357–74.

    Google Scholar 

  70. Carrozzo AM, Gatti S, Ferranti G, Primavera G, Vidolin AP, Nini G. Calcipotriol treatment of confluent and reticulated papillomatosis (Gougerot-Carteau syndrome). JEADV. 2000;14:131–3.

    CAS  PubMed  Google Scholar 

  71. Bikle DD. The vitamin D receptor: a tumor suppressor in skin. Discov Med. 2011;11(56):7–17.

    PubMed  PubMed Central  Google Scholar 

  72. Reichrath J, Kamradt J, Zhu XH. Kong Xf, Tilgen W, Holick MF: Analysis of 1,25-dihydroxyvitamin D3 receptors in basal cell carcinomas. Am J Pathol. 1999;155(2):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reichrath J, Rafi L, Rech M, Mitschele T, Meineke V, Gärtner BC, et al. Analysis of the vitamin D system in cutaneous squamous cell carcinomas (SCC). J Cutan Pathol. 2004;31(3):224–31.

    Article  PubMed  Google Scholar 

  74. Mitschele T, Diesel B, Friedrich M, Meineke V, Maas RM, Gärtner BC, et al. Analysis of the vitamin D system in basal cell carcinomas (BCCs). Lab Investig. 2004;84(6):693–702.

    Article  CAS  PubMed  Google Scholar 

  75. Uhmann A, Niemann H, Lammering B, Henkel C, Heß I, Nitzki F, et al. Antitumoral effects of calcitriol in basal cell carcinomas involve inhibition of Hedgehog (Hh) signaling and induction of vitamin D receptor signaling and differentiation. Mol Cancer Ther. 2011;10(11):2179–88.

    Article  CAS  PubMed  Google Scholar 

  76. Biijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP. Repression of smoothened by patched dependent (pro)vitamin D3 secretion. PLoS Biol. 2006;4:e232.

    Article  Google Scholar 

  77. Köstner K, Denzer N, Müller CSL, Klein R, Tilgen W, Reichrath J. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a meta-analysis of the literature. Anticancer Res. 2009;29:3511–36.

    PubMed  Google Scholar 

  78. Denzer N, Vogt T, Reichrath J. Vitamin D receptor (VDR) polymorphisms and skin cancer: a systematic review. Dermatoendocrinol. 2011;3(3):205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Köstner K, Denzer N, Koreng M, Reichrath S, Gräber S, Klein R, et al. Association of genetic variants of the vitamin D receptor (VDR) with cutaneous squamous cell carcinomas (SCC) and basal cell carcinomas (BCC): a pilot study in a German population. Anticancer Res. 2012;32(1):327–33.

    PubMed  Google Scholar 

  80. Ramachandran S, Fryer AA, Lovatt TJ, Smith AG, Lear JT, Jones PW, et al. Combined effects of gender, skin type and polymorphic genes on clinical phenotype: use of rate of increase in numbers of basal cell carcinomas as a model system. Cancer Lett. 2003;189(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  81. Han J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis. 2007;28(2):390–7.

    Article  CAS  PubMed  Google Scholar 

  82. Osborne JE, Hutchinson PE. Vitamin D and systemic cancer: is this relevant to malignant melanoma? Br J Dermatol. 2002;147(2):197–213.

    Article  CAS  PubMed  Google Scholar 

  83. Reichrath J, Rech M, Moeini M, Meese E, Tilgen W, Seifert M. In vitro comparison of the vitamin D endocrine system in 1,25(OH)2D3-responsive and -resistant melanoma cells. Cancer Biol Ther. 2007;6(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  84. Essa S, Reichrath S, Mahlknecht U, Montenarh M, Vogt T, Reichrath J. Signature of VDR miRNAs and epigenetic modulation of vitamin D signaling in melanoma cell lines. Anticancer Res. 2012;32(1):383–9.

    CAS  PubMed  Google Scholar 

  85. Hutchinson PE, Osborne JE, Lear JT, Smith AG, Bowers PW, Morris PN, et al. Vitamin D receptor polymorphisms are associated with altered prognosis in patients. 2000.

  86. Halsall JA, Osborne JE, Potter L, Pringle JH, Hutchinson PE. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibility and prognosis in malignant melanoma. Br J Cancer. 2004;91(4):765–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mandelcorn-Monson R, Marrett L, Kricker A, Armstrong BK, Orlow I, Goumas C, et al. Sun exposure, vitamin D receptor polymorphisms FokI and BsmI and risk of multiple primary melanoma. Cancer Epidemiol. 2011;35(6):e105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mocellin S, Nitti D. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta-analysis. Cancer. 2008;113(9):2398–407.

    Article  PubMed  Google Scholar 

  89. Newton-Bishop JA, Beswick S, Randerson-Moor J, Chang YM, Affleck P, Elliott F, et al. Serum 25-hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma. J Clin Oncol. 2009;27(32):5439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nürnberg B, Gräber S, Gärtner B, Geisel J, Pföhler C, Schadendorf D, et al. Reduced serum 25-hydroxyvitamin D levels in stage IV melanoma patients. Anticancer Res. 2009;29(9):3669–74.

    PubMed  Google Scholar 

  91. Bade B, Zdebik A, Wagenpfeil S, Gräber S, Geisel J, Vogt T, et al. Low serum 25-hydroxyvitamin d concentrations are associated with increased risk for melanoma and unfavourable prognosis. PLoS One. 2014;9(12):e112863. doi:10.1371/journal.pone.0112863.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fang S, Sui D, Wang Y, Liu H, Chiang YJ, Ross MI, et al. Association of vitamin D levels with outcome in patients with melanoma after adjustment for C-reactive protein. J Clin Oncol. 2016.

  93. Tang JY, Fu T, Leblanc E, Manson JE, Feldman D, Linos E, et al. Calcium plus vitamin D supplementation and the risk of nonmelanoma and melanoma skin cancer: post hoc analyses of the women’s health initiative randomized controlled trial. J Clin Oncol. 2011;29(22):3078–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Reichrath.

Ethics declarations

Conflict of interest

Nothing to declare (for all authors).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichrath, J., Zouboulis, C.C., Vogt, T. et al. Targeting the vitamin D endocrine system (VDES) for the management of inflammatory and malignant skin diseases: An historical view and outlook. Rev Endocr Metab Disord 17, 405–417 (2016). https://doi.org/10.1007/s11154-016-9353-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9353-4

Keywords

Navigation