Skip to main content

Advertisement

Log in

Abstract

Adding to its well-known roles in locomotion and calcium balance, the skeleton has recently been appreciated as a true endocrine organ. Bone remodeling, a highly dynamic process, requires synchronized activities and crosstalk between bone cells. Discovery and characterization of the Wnt/β catenin pathway in bone formation, FGF23 regulation of phosphate homeostasis and osteocalcin in energy and glucose homeostasis have reframed our view of the skeleton from simply a target tissue of the endocrine system to an endocrine tissue itself. This comprehensive review provides an overview of these complex pathways, their application to human bone disorders and implications for developing diagnostic and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest. 2000;105(12):1663–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.

    Article  CAS  PubMed  Google Scholar 

  3. Mundlos S Cleidocranial dysplasia: clinical and molecular genetics. J Med Genet. 1999;36(3):177–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  5. Koga T, Matsui Y, Asagiri M, et al. NFAT and osterix cooperatively regulate bone formation. Nat Med. 2005;11(8):880–5.

    Article  CAS  PubMed  Google Scholar 

  6. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  7. Matsunobu T, Torigoe K, Ishikawa M, et al. Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol. 2009;332(2):325–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005;26(6):743–74.

    Article  CAS  PubMed  Google Scholar 

  9. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004;23(3):552–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kular J, Tickner J, Chim SM, Xu J. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 2012;45(12):863–73.

    Article  CAS  PubMed  Google Scholar 

  11. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  12. Felix R, Hofstetter W, Wetterwald A, Cecchini MG, Fleisch H. Role of colony-stimulating factor-1 in bone metabolism. J Cell Biochem. 1994;55(3):340–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tondravi MM, McKercher SR, Anderson K, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature. 1997;386(6620):81–4.

    Article  CAS  PubMed  Google Scholar 

  14. Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 2001;7(8):613–35.

    Article  CAS  PubMed  Google Scholar 

  15. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  16. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49.

    Article  CAS  PubMed  Google Scholar 

  17. Stenbeck G, Horton MA. Endocytic trafficking in actively resorbing osteoclasts. J Cell Sci. 2004;117(Pt 6):827–36.

    Article  CAS  PubMed  Google Scholar 

  18. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  19. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Eng. 1991;113(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17(11):2068–79.

    Article  CAS  PubMed  Google Scholar 

  22. Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75.

    Article  CAS  PubMed  Google Scholar 

  23. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    Article  CAS  PubMed  Google Scholar 

  24. Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61.

    Article  CAS  PubMed  Google Scholar 

  25. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Heino TJ, Hentunen TA, Vaananen HK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem. 2002;85(1):185–97.

    Article  CAS  PubMed  Google Scholar 

  27. Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.

    Article  CAS  PubMed  Google Scholar 

  28. Yang CM, Chien CS, Yao CC, Hsiao LD, Huang YC, Wu CB. Mechanical strain induces collagenase-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells. J Biol Chem. 2004;279(21):22158–65.

    Article  CAS  PubMed  Google Scholar 

  29. Partridge NC, Jeffrey JJ, Ehlich LS, et al. Hormonal regulation of the production of collagenase and a collagenase inhibitor activity by rat osteogenic sarcoma cells. Endocrinology. 1987;120(5):1956–62.

    Article  CAS  PubMed  Google Scholar 

  30. McHugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000;105(4):433–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hill PA. Bone remodelling. Br J Orthod. 1998;25(2):101–7.

    Article  CAS  PubMed  Google Scholar 

  32. Zaidi M. “Calcium receptors” on eukaryotic cells with special reference to the osteoclast. Biosci Rep. 1990;10(6):493–507.

    Article  CAS  PubMed  Google Scholar 

  33. Quinn JM, Itoh K, Udagawa N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res. 2001;16(10):1787–94.

    Article  CAS  PubMed  Google Scholar 

  34. Delaisse JM. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep. 2014;3:561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tran Van P, Vignery A, Baron R. An electron-microscopic study of the bone-remodeling sequence in the rat. Cell Tissue Res. 1982;225(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  36. Andersen TL, Abdelgawad ME, Kristensen HB, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol. 2013;183(1):235–46.

    Article  CAS  PubMed  Google Scholar 

  37. Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995;17(2 Suppl):93S–8S.

    Article  CAS  PubMed  Google Scholar 

  39. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105(52):20764–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006;25(24):5840–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  42. Fermor B, Skerry TM. PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res. 1995;10(12):1935–43.

    Article  CAS  PubMed  Google Scholar 

  43. Saini V, Marengi DA, Barry KJ, et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013;288(28):20122–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kim JH, Liu X, Wang J, et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5(1):13–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.

    Article  CAS  PubMed  Google Scholar 

  46. Hartmann C. A wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006;16(3):151–8.

    Article  CAS  PubMed  Google Scholar 

  47. Kato M, Patel MS, Levasseur R, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a wnt coreceptor. J Cell Biol. 2002;157(2):303–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9(10):575–83.

    Article  CAS  PubMed  Google Scholar 

  49. Mao B, Wu W, Davidson G, et al. Kremen proteins are dickkopf receptors that regulate wnt/beta-catenin signalling. Nature. 2002;417(6889):664–7.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Lu W, King TD, Liu CC, Bijur GN, Bu G. Dkk1 stabilizes wnt co-receptor LRP6: implication for wnt ligand-induced LRP6 down-regulation. PLoS One. 2010;5(6):e11014.

  51. Morvan F, Boulukos K, Clement-Lacroix P, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21(6):934–45.

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Sarosi I, Cattley RC, et al. Dkk1-mediated inhibition of wnt signaling in bone results in osteopenia. Bone. 2006;39(4):754–66.

    Article  CAS  PubMed  Google Scholar 

  53. van Bezooijen RL, Roelen BA, Visser A, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199(6):805–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Roudier M, Li X, Niu QT, et al. Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. Arthritis Rheum. 2013;65(3):721–31.

    Article  CAS  PubMed  Google Scholar 

  55. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Ominsky MS, Niu QT, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.

    Article  PubMed  Google Scholar 

  57. Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40(6):1434–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bellido T, Ali AA, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83.

    Article  CAS  PubMed  Google Scholar 

  60. Sawakami K, Robling AG, Ai M, et al. The wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711.

    Article  CAS  PubMed  Google Scholar 

  61. Habener JF, Kemper BW, Rich A, Potts Jr JT. Biosynthesis of parathyroid hormone. Recent Prog Horm Res. 1976;33:249–308.

    CAS  PubMed  Google Scholar 

  62. Grant FD, Conlin PR, Brown EM. Rate and concentration dependence of parathyroid hormone dynamics during stepwise changes in serum ionized calcium in normal humans. J Clin Endocrinol Metab. 1990;71(2):370–8.

    Article  CAS  PubMed  Google Scholar 

  63. Brown EM, Pollak M, Riccardi D, Hebert SC. Cloning and characterization of an extracellular ca(2+)-sensing receptor from parathyroid and kidney: new insights into the physiology and pathophysiology of calcium metabolism. Nephrol Dial Transplant. 1994;9(12):1703–6.

    CAS  PubMed  Google Scholar 

  64. Kremer R, Bolivar I, Goltzman D, Hendy GN. Influence of calcium and 1,25-dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells. Endocrinology. 1989;125(2):935–41.

    Article  CAS  PubMed  Google Scholar 

  65. Silver J, Naveh-Many T, Mayer H, Schmelzer HJ, Popovtzer MM. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78(5):1296–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117(12):4003–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Brown EM, Hebert SC. A cloned extracellular ca(2+)-sensing receptor: molecular mediator of the actions of extracellular Ca2+ on parathyroid and kidney cells? Kidney Int. 1996;49(4):1042–6.

    Article  CAS  PubMed  Google Scholar 

  68. Cheng I, Klingensmith ME, Chattopadhyay N, et al. Identification and localization of the extracellular calcium-sensing receptor in human breast. J Clin Endocrinol Metab. 1998;83(2):703–7.

    CAS  PubMed  Google Scholar 

  69. Kameda T, Mano H, Yamada Y, et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun. 1998;245(2):419–22.

    Article  CAS  PubMed  Google Scholar 

  70. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75(7):1297–303.

    Article  CAS  PubMed  Google Scholar 

  71. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22.

    Article  CAS  PubMed  Google Scholar 

  72. Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev. 2005;26(1):78–113.

    Article  CAS  PubMed  Google Scholar 

  73. Dunlay R, Hruska K. PTH receptor coupling to phospholipase C is an alternate pathway of signal transduction in bone and kidney. Am J Physiol. 1990;258(2 Pt 2):F223–31.

    CAS  PubMed  Google Scholar 

  74. Hebert SC. Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int. 1996;50(6):2129–39.

    Article  CAS  PubMed  Google Scholar 

  75. Friedman PA, Gesek FA. Calcium transport in renal epithelial cells. Am J Physiol. 1993;264(2 Pt 2):F181–98.

    CAS  PubMed  Google Scholar 

  76. Takahashi N, Udagawa N, Takami M, Suda T. Chapter 7 - cells of bone: osteoclast generation. In: JPBGRA R, editor. Principles of bone biology. second ed. San Diego: Academic Press; 2002. p. 109–26. doi:10.1016/B978-012098652-1.50109-8.

    Chapter  Google Scholar 

  77. Goetz R, Nakada Y, Hu MC, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-klotho complex formation. Proc Natl Acad Sci U S A. 2010;107(1):407–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Bergwitz C, Banerjee S, Abu-Zahra H, et al. Defective O-glycosylation due to a novel homozygous S129P mutation is associated with lack of fibroblast growth factor 23 secretion and tumoral calcinosis. J Clin Endocrinol Metab. 2009;94(11):4267–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  81. Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Imura A, Iwano A, Tohyama O, et al. Secreted klotho protein in sera and CSF: implication for post-translational cleavage in release of klotho protein from cell membrane. FEBS Lett. 2004;565(1–3):143–7.

    Article  CAS  PubMed  Google Scholar 

  83. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310(5747):490–3.

    Article  CAS  PubMed  Google Scholar 

  84. Hu MC, Shi M, Zhang J, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Shigematsu T, Kazama JJ, Yamashita T, et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44(2):250–6.

    Article  CAS  PubMed  Google Scholar 

  86. Gutierrez O, Isakova T, Rhee E, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15.

    Article  CAS  PubMed  Google Scholar 

  87. Komaba H, Goto S, Fujii H, et al. Depressed expression of klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010;77(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  88. Stubbs JR, Idiculla A, Slusser J, Menard R, Quarles LD. Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J Am Soc Nephrol. 2010;21(2):353–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Koizumi M, Komaba H, Fukagawa M. Parathyroid function in chronic kidney disease: role of FGF23-klotho axis. Contrib Nephrol. 2013;180:110–23.

    Article  CAS  PubMed  Google Scholar 

  90. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Nakayama M, Kaizu Y, Nagata M, et al. Fibroblast growth factor 23 is associated with carotid artery calcification in chronic kidney disease patients not undergoing dialysis: a cross-sectional study. BMC Nephrol. 2013;14:22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205(2):385–90.

    Article  CAS  PubMed  Google Scholar 

  93. Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.

    Article  CAS  PubMed  Google Scholar 

  95. Nishi H, Nii-Kono T, Nakanishi S, et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin Pract. 2005;101(2):c94–9.

    Article  CAS  PubMed  Google Scholar 

  96. Yu X, Sabbagh Y, Davis SI, Demay MB, White KE. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7.

    Article  CAS  PubMed  Google Scholar 

  97. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–64.

    Article  CAS  PubMed  Google Scholar 

  98. Saji F, Shigematsu T, Sakaguchi T, et al. Fibroblast growth factor 23 production in bone is directly regulated by 1{alpha},25-dihydroxyvitamin D, but not PTH. Am J Physiol Renal Physiol. 2010;299(5):F1212–7.

    Article  CAS  PubMed  Google Scholar 

  99. Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1–34) parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7(1):139–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299(4):F882–9.

    Article  CAS  PubMed  Google Scholar 

  101. Shimada T, Yamazaki Y, Takahashi M, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol. 2005;289(5):F1088–95.

    Article  CAS  PubMed  Google Scholar 

  102. David V, Dai B, Martin A, Huang J, Han X, Quarles LD. Calcium regulates FGF-23 expression in bone. Endocrinology. 2013;154(12):4469–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.

    CAS  PubMed  Google Scholar 

  104. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008;105(13):5266–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Murshed M, Schinke T, McKee MD, Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol. 2004;165(5):625–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Mauro LJ, Olmsted EA, Skrobacz BM, Mourey RJ, Davis AR, Dixon JE. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem. 1994;269(48):30659–67.

    CAS  PubMed  Google Scholar 

  108. Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  110. Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.

    Article  CAS  PubMed  Google Scholar 

  112. Pasco JA, Henry MJ, Sanders KM, et al. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong osteoporosis study. J Bone Miner Res. 2004;19(1):19–24.

  113. Hinoi E, Gao N, Jung DY, et al. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008;183(7):1235–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Kanazawa I, Yamaguchi T, Yamauchi M, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int. 2011;22(1):187–94.

    Article  CAS  PubMed  Google Scholar 

  115. Kindblom JM, Ohlsson C, Ljunggren O, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009;24(5):785–91.

    Article  CAS  PubMed  Google Scholar 

  116. Goliasch G, Blessberger H, Azar D, et al. Markers of bone metabolism in premature myocardial infarction (</= 40 years of age). Bone. 2011;48(3):622–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Gonciulea and Dr. Jan de Beur have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Jan de Beur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonciulea, A., de Beur, S.J. The dynamic skeleton. Rev Endocr Metab Disord 16, 79–91 (2015). https://doi.org/10.1007/s11154-015-9316-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-015-9316-1

Keywords

Navigation