Skip to main content

Advertisement

Log in

LRP receptor family member associated bone disease

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

A dozen years ago the identification of causal mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene involved in two rare bone disorders propelled research in the bone field in totally new directions. Since then, there have been an explosion in the number of reports that highlight the role of the Wnt/β-catenin pathway in the regulation of bone homeostasis. In this review we discuss some of the most recent reports (in the past 2 years) highlighting the involvement of the members of the LRP family (LRP5, LRP6, LRP4, and more recently LRP8) in the maintenance of bone and their implications in bone diseases. These reports include records of new single nucleotides polymorphisms (SNPs) and haplotypes that suggest variants in these genes can contribute to subtle variation in bone traits to mutations that give rise to extreme bone phenotypes. All of these serve to further support and reinforce the importance of this tightly regulated pathway in bone. Furthermore, we discuss provocative reports suggesting novel approaches through inhibitors of this pathway to treat rarer diseases such as Osteoporosis-Pseudoglioma Syndrome (OPPG), Osteogenesis Imperfecta (OI), and Sclerosteosis/Van Buchem disease. It is hoped that by understanding the role of each component of the pathway and their involvement in bone diseases that this knowledge will allow us to develop new, more effective therapeutic approaches for more common diseases such as post-menopausal osteoporosis, osteoarthritis, and rheumatoid arthritis as well as these rarer bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, et al. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet. 1996;59:146–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RB. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am J Hum Genet. 1997;60(6):1326–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  4. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9. doi:10.1086/338450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407(6803):530–5. doi:10.1038/35035117.

    Article  CAS  PubMed  Google Scholar 

  6. Balemans W, Devogelaer J-P, Cleiren E, Piters E, Caussin E, Van Hul W. Novel LRP5 missense mutation in a patient with a high bone mass phenotype results in decreased DKK1-mediated inhibition of Wnt signaling*. J Bone Miner Res. 2007;22(5):708–16. doi:10.1359/jbmr.070211.

    Article  CAS  PubMed  Google Scholar 

  7. Barros E, Dias da Silva M, Kunii I, Hauache O, Lazaretti-Castro M. A novel mutation in the LRP5 gene is associated with osteoporosis-pseudoglioma syndrome. Osteoporos Int. 2007;18(7):1017–8. doi:10.1007/s00198-007-0360-x.

    Article  CAS  PubMed  Google Scholar 

  8. Marques-Pinheiro A, Levasseur R, Cormier C, Bonneau J, Boileau C, Varret M, et al. Novel LRP5 gene mutation in a patient with osteoporosis-pseudoglioma syndrome. Joint Bone Spine. 2010;77(2):151–3.

    Article  CAS  PubMed  Google Scholar 

  9. Narumi S, Numakura C, Shiihara T, Seiwa C, Nozaki Y, Yamagata T, et al. Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: Identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray. Am J Med Genet A. 2010;152A(1):133–40. doi:10.1002/ajmg.a.33177.

    Article  CAS  PubMed  Google Scholar 

  10. Okubo M, Horinishi A, Kim DH, Yamamoto TT, Murase T. Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 (LRP5) gene. Hum Mutat. 2002;19:186–8.

    Article  PubMed  Google Scholar 

  11. Saarinen A, Valimaki VV, Valimaki MJ, Loyttyniemi E, Auro K, Uusen P, et al. The A1330V polymorhpism of the low-density lipoprotein receptor-related protein 5 gene (LRP5) associates with low peak bone mass in young healthy men. Bone. 2007;40:1006–12.

    Article  CAS  PubMed  Google Scholar 

  12. Streeten EA, McBride DJ, Lodge AL, Pollin TI, Stinchcomb DG, Agarwala R, et al. Reduced incidence of hip fracture in the Old Order Amish. J Bone Miner Res. 2004;19(2):308–13. doi:10.1359/JBMR.0301223.

    Article  PubMed  Google Scholar 

  13. Streeten EA, Puffenberger E, Morton H, McBride D. Osteoporosis pseudoglioma syndrome: 4 siblings with a compound heterozygote LRP5 mutation. J Bone Miner Res. 2004;19 Suppl 1:S182.

    Google Scholar 

  14. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet. 2003;72(3):763–71. doi:10.1086/368277.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Joeng KS, Schumacher CA, Zylstra-Diegel CR, Long F, Williams BO. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol. 2011;359(2):222–9. doi:10.1016/j.ydbio.2011.08.020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Joiner DM, Less KD, Van Wieren EM, Hess D, Williams BO. Heterozygosity for an inactivating mutation in low-density lipoprotein-related receptor 6 (Lrp6) increases osteoarthritis severity in mice after ligament and meniscus injury. Osteoarthr Cartil/OARS Osteoarthr Res Society. 2013;21(10):1576–85. doi:10.1016/j.joca.2013.05.019.

    Article  CAS  Google Scholar 

  17. Riddle RC, Diegel CR, Leslie JM, Van Koevering KK, Faugere MC, Clemens TL, et al. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS One. 2013;8(5), e63323. doi:10.1371/journal.pone.0063323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS ONE. 2009;4(11), e7930.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kumar J, Swanberg M, McGuigan F, Callreus M, Gerdhem P, Åkesson K. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone. 2011;49(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, et al. LRP4 mutations alter Wnt/[beta]-catenin signaling and cause limb and kidney malformations in cenani-lenz syndrome. Am J Hum Genet. 2010;86(5):696–706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, et al. Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics. 2006;87(5):673–7.

    Article  CAS  PubMed  Google Scholar 

  22. Experimental drug may change the treatment of osteoporosis. Romosozumab appears to increase bone mineral density and help rebuild the skeleton at the same time. DukeMedicine healthnews. 2014;20(4):7.

  23. Costa AG, Bilezikian JP, Lewiecki EM. Update on romosozumab: a humanized monoclonal antibody to sclerostin. Expert Opin Biol Ther. 2014;14(5):697–707. doi:10.1517/14712598.2014.895808.

    Article  CAS  PubMed  Google Scholar 

  24. Evenepoel P, D’Haese P, Brandenburg V. Romosozumab in postmenopausal women with osteopenia. N Engl J Med. 2014;370(17):1664. doi:10.1056/NEJMc1402396#SA1.

    Article  CAS  PubMed  Google Scholar 

  25. McClung MR, Grauer A. Romosozumab in postmenopausal women with osteopenia. N Engl J Med. 2014;370(17):1664–5. doi:10.1056/NEJMc1402396.

    Article  CAS  PubMed  Google Scholar 

  26. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20. doi:10.1056/NEJMoa1305224.

    Article  CAS  PubMed  Google Scholar 

  27. McColm J, Hu L, Womack T, Tang CC, Chiang AY. Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res. 2014;29(4):935–43. doi:10.1002/jbmr.2092.

    Article  CAS  PubMed  Google Scholar 

  28. Recker R, Benson C, Matsumoto T, Bolognese M, Robins D, Alam J, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2014. doi:10.1002/jbmr.2351.

    PubMed  Google Scholar 

  29. Montagnani A. Bone anabolics in osteoporosis: actuality and perspectives. World J Orthop. 2014;5(3):247–54. doi:10.5312/wjo.v5.i3.247.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rey JP, Ellies DL. Wnt modulators in the biotech pipeline. Dev Dyn Off Publ Am Assoc Anatomists. 2010;239(1):102–14. doi:10.1002/dvdy.22181.

    CAS  Google Scholar 

  31. Brown SD, Twells RC, Hey PJ, Cox RD, Levy ER, Soderman AR, et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun. 1998;248:879–88.

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Cam J, Bu G. Low-density lipoprotein receptor family: endocytosis and signal transduction. Mol Neurobiol. 2001;23(1):53–67. doi:10.1385/MN:23:1:53.

    Article  CAS  PubMed  Google Scholar 

  33. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438(7069):873–7. doi:10.1038/nature04185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, et al. A mechanism for Wnt coreceptor activation. Mol Cell. 2004;13(1):149–56.

    Article  CAS  PubMed  Google Scholar 

  35. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997;16(13):3797–804. doi:10.1093/emboj/16.13.3797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yanagawa S, Matsuda Y, Lee JS, Matsubayashi H, Sese S, Kadowaki T, et al. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J. 2002;21(7):1733–42. doi:10.1093/emboj/21.7.1733.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nusse R. Repression and activation. Trends in genetics. TIG. 1999;15(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7. doi:10.1074/jbc.M413274200.

    Article  CAS  PubMed  Google Scholar 

  39. Fedi P, Bafico A, Nieto Soria A, Burgess WH, Miki T, Bottaro DP, et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem. 1999;274(27):19465–72.

    Article  CAS  PubMed  Google Scholar 

  40. Bao J, Zheng JJ, Wu D. The structural basis of DKK-mediated inhibition of Wnt/LRP signaling. Sci Signal. 2012;5(224), e22. doi:10.1126/scisignal.2003028.

    Article  Google Scholar 

  41. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-Catenin signalling. Nature. 2002;417:664–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura T, Aoki S, Kitajima K, Takahashi T, Matsumoto K, Nakamura T. Molecular cloning and characterization of Kremen, a novel kringle-containing transmembrane protein. Biochim Biophys Acta. 2001;1518(1–2):63–72.

    Article  CAS  PubMed  Google Scholar 

  43. Cselenyi CS, Lee E. Context-dependent activation or inhibition of Wnt-beta-catenin signaling by Kremen. Sci Signal. 2008;1(8), e10. doi:10.1126/stke.18pe10.

    Article  Google Scholar 

  44. Galli LM, Barnes T, Cheng T, Acosta L, Anglade A, Willert K, et al. Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn Off Publ Am Assoc Anat. 2006;235(3):681–90. doi:10.1002/dvdy.20681.

    CAS  Google Scholar 

  45. Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJ, et al. Secreted frizzled related proteins: implications in cancers. Biochim Biophys Acta. 2014;1845(1):53–65. doi:10.1016/j.bbcan.2013.11.004.

    CAS  PubMed  Google Scholar 

  46. Guidato S, Itasaki N. Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6. Dev Biol. 2007;310(2):250–63. doi:10.1016/j.ydbio.2007.07.033.

    Article  CAS  PubMed  Google Scholar 

  47. Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem. 2009;284(34):23159–68. doi:10.1074/jbc.M109.025478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ellies DL, Economou A, Viviano B, Rey JP, Paine-Saunders S, Krumlauf R, et al. Wise regulates bone deposition through genetic interactions with Lrp5. PLoS One. 2014;9(5), e96257. doi:10.1371/journal.pone.0096257.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Balemans W, Piters E, Cleiren E, Ai M, Van Wesenbeeck L, Warman ML, et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif Tissue Int. 2008;82(6):445–53. doi:10.1007/s00223-008-9130-9.

    Article  CAS  PubMed  Google Scholar 

  50. Boudin E, Steenackers E, de Freitas F, Nielsen TL, Andersen M, Brixen K, et al. A common LRP4 haplotype is associated with bone mineral density and hip geometry in men-data from the Odense Androgen Study (OAS). Bone. 2013;53(2):414–20. doi:10.1016/j.bone.2013.01.014.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Zhang X, Zhang L, Zhou F, van Dinther M, Ten Dijke P. LRP8 mediates Wnt/beta-catenin signaling and controls osteoblast differentiation. J Bone Miner Res. 2012;27(10):2065–74. doi:10.1002/jbmr.1661.

    Article  CAS  PubMed  Google Scholar 

  52. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH-J, Glass DA, et al. Cbfa 1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:303–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003;18(6):960–74. doi:10.1359/jbmr.2003.18.6.960.

    Article  CAS  PubMed  Google Scholar 

  54. Niziolek PJ, Warman ML, Robling AG. Mechanotransduction in bone tissue: the A214V and G171V mutations in Lrp5 enhance load-induced osteogenesis in a surface-selective manner. Bone. 2012;51(3):459–65. doi:10.1016/j.bone.2012.05.023.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Javaheri B, Sunters A, Zaman G, Suswillo RF, Saxon LK, Lanyon LE, et al. Lrp5 is not required for the proliferative response of osteoblasts to strain but regulates proliferation and apoptosis in a cell autonomous manner. PLoS One. 2012;7(5), e35726. doi:10.1371/journal.pone.0035726.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Zhao L, Shim JW, Dodge TR, Robling AG, Yokota H. Inactivation of Lrp5 in osteocytes reduces young’s modulus and responsiveness to the mechanical loading. Bone. 2013;54(1):35–43. doi:10.1016/j.bone.2013.01.033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Falcon-Ramirez E, Casas-Avila L, Cerda-Flores RM, Castro-Hernandez C, Rubio-Lightbourn J, Velazquez-Cruz R, et al. Association of LRP5 haplotypes with osteoporosis in Mexican women. Mol Biol Rep. 2013;40(3):2705–10. doi:10.1007/s11033-012-2357-6.

    Article  CAS  PubMed  Google Scholar 

  58. Sassi R, Sahli H, Souissi C, El Mahmoudi H, Zouari B, ElGaaied ABA, et al. Association of LRP5 genotypes with osteoporosis in Tunisian post-menopausal women. BMC Musculoskelet Disord. 2014;15:144. doi:10.1186/1471-2474-15-144.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Park SE, Oh KW, Lee WY, Baek KH, Yoon KH, Son HY et al. Association of osteoporosis susceptibility genes with bone mineral density and bone metabolism related markers in Koreans: The Chungju Metabolic Disease Cohort (CMC) study. Endocr J. 2014;61(11):1069–78

  60. Campos-Obando N, Oei L, Hoefsloot LH, Kiewiet RM, Klaver CC, Simon ME, et al. Osteoporotic vertebral fractures during pregnancy: be aware of a potential underlying genetic cause. J Clin Endocrinol Metab. 2014;99(4):1107–11. doi:10.1210/jc.2013-3238.

    Article  CAS  PubMed  Google Scholar 

  61. Chapman K, Mustafa Z, Dowling B, Southam L, Carr A, Loughlin J. Finer linkage mapping of primary hip osteoarthritis susceptibility on chromosome 11q in a cohort of affected female sibling pairs. Arthritis Rheum. 2002;46(7):1780–3. doi:10.1002/art.10412.

    Article  CAS  PubMed  Google Scholar 

  62. Chapman K, Mustafa Z, Irven C, Carr AJ, Clipsham K, Smith A, et al. Osteoarthritis-susceptibility locus on chromosome 11q, detected by linkage. Am J Hum Genet. 1999;65(1):167–74. doi:10.1086/302465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Shi XW, Guo X, Lv AL, Kang L, Zhou YL, Zhang YZ, et al. Heritability estimates and linkage analysis of 23 short tandem repeat loci on chromosomes 2, 11, and 12 in an endemic osteochondropathy in China. Scand J Rheumatol. 2010;39(3):259–65. doi:10.3109/03009740903270599.

    Article  CAS  PubMed  Google Scholar 

  64. Smith AJ, Gidley J, Sandy JR, Perry MJ, Elson CJ, Kirwan JR, et al. Haplotypes of the low-density lipoprotein receptor-related protein 5 (LRP5) gene: are they a risk factor in osteoarthritis? Osteoarthr Cartil/OARS Osteoarthr Res Soc. 2005;13(7):608–13. doi:10.1016/j.joca.2005.01.008.

    Article  CAS  Google Scholar 

  65. Yerges-Armstrong LM, Yau MS, Liu Y, Krishnan S, Renner JB, Eaton CB, et al. Association analysis of BMD-associated SNPs with knee osteoarthritis. J Bone Miner Res. 2014;29(6):1373–9. doi:10.1002/jbmr.2160.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lodewyckx L, Luyten FP, Lories RJ. Genetic deletion of low-density lipoprotein receptor-related protein 5 increases cartilage degradation in instability-induced osteoarthritis. Rheumatology (Oxford). 2012;51(11):1973–8. doi:10.1093/rheumatology/kes178.

    Article  CAS  Google Scholar 

  67. Dequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res. 2003;15(5):426–39.

    Article  PubMed  Google Scholar 

  68. Miao CG, Yang YY, He X, Li XF, Huang C, Huang Y, et al. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal. 2013;25(10):2069–78. doi:10.1016/j.cellsig.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  69. de Rooy DP, Yeremenko NG, Wilson AG, Knevel R, Lindqvist E, Saxne T, et al. Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):769–75. doi:10.1136/annrheumdis-2012-202184.

    Article  PubMed  Google Scholar 

  70. Padhi D, Allison M, Kivitz AJ, Gutierrez MJ, Stouch B, Wang C, et al. Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double-blind, placebo-controlled study. J Clin Pharmacol. 2013. doi:10.1002/jcph.239.

    PubMed  Google Scholar 

  71. Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D, et al. Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res. 2014;29(1):29–42. doi:10.1002/jbmr.2059.

    Article  CAS  PubMed  Google Scholar 

  72. Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, et al. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med. 2013;5(211):211ra158. doi:10.1126/scitranslmed.3006627.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Jacobsen CM, Barber LA, Ayturk UM, Roberts HJ, Deal LE, Schwartz MA, et al. Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta. J Bone Miner Res. 2014;29(10):2297–306. doi:10.1002/jbmr.2198.

    Article  CAS  PubMed  Google Scholar 

  74. Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M, et al. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone. 2014;66:182–8. doi:10.1016/j.bone.2014.06.015.

    Article  CAS  PubMed  Google Scholar 

  75. Lindahl K, Langdahl B, Ljunggren O, Kindmark A. Treatment of osteogenesis imperfecta in adults. Eur J Endocrinol/Eur Fed Endocr Soc. 2014;171(2):R79–90. doi:10.1530/EJE-14-0017.

    Article  CAS  Google Scholar 

  76. Ngan KK, Bowe J, Goodger N. The risk of bisphosphonate-related osteonecrosis of the jaw in children. A case report and literature review. Dent Updat. 2013;40(9):733–4. 9.

    Google Scholar 

  77. Christou J, Johnson AR, Hodgson TA. Bisphosphonate-related osteonecrosis of the jaws and its relevance to children--a review. Int J Paediatr Dent/Br Paedodontic Soc [and] Int Assoc Dent Child. 2013;23(5):330–7. doi:10.1111/ipd.12047.

    Article  Google Scholar 

  78. Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28(1):73–80. doi:10.1002/jbmr.1717.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Sinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC, et al. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014;25(8):2097–107. doi:10.1007/s00198-014-2737-y.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is funded by grants from the NIH NIAMS RO1 AR053949 and RC2 AR058962, NIA P01 AG039355, a grant from the UMKC CEMT through the Missouri Life Science Research Board, and a University of Missouri Research Board Faculty Grant.

Conflict of Interest Statement

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lara-Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Castillo, N., Johnson, M.L. LRP receptor family member associated bone disease. Rev Endocr Metab Disord 16, 141–148 (2015). https://doi.org/10.1007/s11154-015-9315-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-015-9315-2

Keywords

Navigation