Skip to main content

Advertisement

Log in

Physiological mechanisms and therapeutic potential of bone mechanosensing

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as “physical environment” sensors in cells of the osteoblasts lineage. Indeed, polycystin–1 (Pkd1, or PC1) and polycystin–2 (Pkd2, or PC2‚ or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luu YK, Pessin JE, Judex S, Rubin J, Rubin CT. Mechanical signals as a non-invasive means to influence mesenchymal stem cell fate, promoting bone and suppressing the fat phenotype. Bonekey Osteovision. 2009;6(4):132–49. doi:10.1138/20090371.

    PubMed Central  PubMed  Google Scholar 

  2. Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology. 2008;149(12):6065–75. doi:10.1210/en.2008-0687.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2(3):165–71.

    Article  CAS  PubMed  Google Scholar 

  4. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3(6):379–89. doi:10.1111/j.1474-9728.2004.00127.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Meunier P, Courpron P, Edouard C, Bernard J, Bringuier J, Vignon G. Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin Endocrinol Metab. 1973;2(2):239–56.

    Article  CAS  PubMed  Google Scholar 

  6. Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology. 2004;145(5):2421–32. doi:10.1210/en.2003-1156.

    Article  CAS  PubMed  Google Scholar 

  7. Hughes-Fulford M Signal transduction and mechanical stress. Sci STKE. 2004;2004(249):RE12.

    PubMed  Google Scholar 

  8. Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem Biophys Res Commun. 2005;328(3):751–5.

    Article  CAS  PubMed  Google Scholar 

  9. Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene. 2006;367:1–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem. 2003;88(1):104–12.

    Article  CAS  PubMed  Google Scholar 

  11. Turner CH, Warden SJ, Bellido T, Plotkin LI, Kumar N, Jasiuk I, et al. Mechanobiology of the skeleton. Sci Signal. 2009;2(68):pt3. doi:10.1126/scisignal.268pt3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007;148(5):2553–62. doi:10.1210/en.2006-1704.

    Article  CAS  PubMed  Google Scholar 

  13. Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A. 2007;104(45):17879–84. doi:10.1073/pnas.0708467104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Boutahar N, Guignandon A, Vico L, Lafage-Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem. 2004;279(29):30588–99. doi:10.1074/jbc.M313244200.

    Article  CAS  PubMed  Google Scholar 

  15. Du L, Fan H, Miao H, Zhao G, Hou Y. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells. Bioelectromagnetics. 2014;35(7):519–30. doi:10.1002/bem.21873.

    Article  PubMed  CAS  Google Scholar 

  16. Bonewald L Mechanosensation and transduction in osteocytes. Bonekey Osteovision. 2006;3:7–15.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–15. doi:10.1016/j.bone.2007.12.224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteoporos Rep. 2012;10(2):118–25. doi:10.1007/s11914-012-0105-4.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: Master Orchestrators of Bone. Calcif Tissue Int. 2013. doi:10.1007/s00223-013-9790-y.

    PubMed Central  PubMed  Google Scholar 

  20. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of beta-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: Implications for the study of mechanosensation in bone. Bone. 2010;47(5):872–81. doi:10.1016/j.bone.2010.08.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lu XL, Huo B, Chiang V, Guo XE. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(3):563–74. doi:10.1002/jbmr.1474.

    Article  CAS  Google Scholar 

  22. Jing D, Lu XL, Luo E, Sajda P, Leong PL, Guo XE. Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow. Bone. 2013;53(2):531–40. doi:10.1016/j.bone.2013.01.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Galli C, Passeri G, Macaluso GM. Osteocytes and WNT: the mechanical control of bone formation. J Dent Res. 2010;89(4):331–43. doi:10.1177/0022034510363963.

    Article  CAS  PubMed  Google Scholar 

  24. Tatsumi S, Ishii K, Amizuka N, Li MQ, Kobayashi T, Kohno K, et al. Targeted ablation of Osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. doi:10.1016/j.cmet.2007.05.001.

    Article  CAS  PubMed  Google Scholar 

  25. Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int. 2010;21(9):1457–69. doi:10.1007/s00198-010-1194-5.

    Article  CAS  PubMed  Google Scholar 

  26. Santos A, Bakker AD, Klein-Nulend J. The role of osteocytes in bone mechanotransduction. Osteoporos Int. 2009;20(6):1027–31. doi:10.1007/s00198-009-0858-5.

    Article  CAS  PubMed  Google Scholar 

  27. Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell... And more. Endocr Rev. 2013;34(5):658–90. doi:10.1210/er.2012-1026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Burger EH, Klein-Nulend J, Smit TH. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon–a proposal. J Biomech. 2003;36(10):1453–9.

    Article  PubMed  Google Scholar 

  30. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. doi:10.1016/j.bone.2012.01.025.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bonewald LF. The amazing osteocyte. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(2):229–38. doi:10.1002/jbmr.320.

    Article  CAS  Google Scholar 

  32. Bonewald LF. Mechanosensation and transduction in osteocytes. Bonekey Osteovision. 2006;3(10):7–15.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lanyon LE. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int. 1993;53(Suppl 1):S102–6 discussion S6-7.

    Article  PubMed  Google Scholar 

  34. Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17(11):2068–79. doi:10.1359/jbmr.2002.17.11.2068.

    Article  CAS  Google Scholar 

  35. Ehrlich PJ, Noble BS, Jessop HL, Stevens HY, Mosley JR, Lanyon LE. The effect of in vivo mechanical loading on estrogen receptor alpha expression in rat ulnar osteocytes. J Bone Miner Res. 2002;17(9):1646–55. doi:10.1359/jbmr.2002.17.9.1646.

    Article  CAS  PubMed  Google Scholar 

  36. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209–17. doi:10.1016/j.bone.2011.10.025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, et al. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281(41):30884–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83. doi:10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  39. Varelas X The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014;141(8):1614–26. doi:10.1242/dev.102376.

    Article  CAS  PubMed  Google Scholar 

  40. Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol Quant Biosci Nano Macro. 2010;2(9):435–42. doi:10.1039/c0ib00034e.

    CAS  Google Scholar 

  41. Matthews BD, Overby DR, Mannix R, Ingber DE. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci. 2006;119(Pt 3):508–18. doi:10.1242/jcs.02760.

    Article  CAS  PubMed  Google Scholar 

  42. Siller-Jackson AJ, Burra S, Gu S, Harris SE, Boenwald LF, Sprague E, et al. The role of alpha5 integrin as a mechanosensor in the regulation of connexin 43 hemichaneel release of prostaglandin in response to mechanical stress. J Bone Miner Res. 2006;21(Suppl 1):S72.

    Google Scholar 

  43. Grimston SK, Brodt MD, Silva MJ, Civitelli R. Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res. 2008;23(6):879–86. doi:10.1359/jbmr.080222.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Loiselle AE, Paul EM, Lewis GS, Donahue HJ. Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res. 2013;31(1):147–54. doi:10.1002/jor.22178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem. 2003;278(44):43146–56. doi:10.1074/jbc.M302993200.

    Article  CAS  PubMed  Google Scholar 

  46. Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, et al. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. J Cell Biol. 2008;181(5):859–71. doi:10.1083/jcb.200708037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Li J, Liu D, Ke HZ, Duncan RL, Turner CH. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem. 2005;280(52):42952–9. doi:10.1074/jbc.M506415200.

    Article  CAS  PubMed  Google Scholar 

  48. Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, et al. Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol. 2003;17(7):1356–67.

    Article  CAS  PubMed  Google Scholar 

  49. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  50. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation. 2008;117(9):1161–71. doi:10.1161/CIRCULATIONAHA.107.710111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC, et al. Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol. 2006;17(4):1015–25.

    Article  CAS  PubMed  Google Scholar 

  52. Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, et al. Polycystin-1 and −2 dosage regulates pressure sensing. Cell. 2009;139(3):587–96. doi:10.1016/j.cell.2009.08.045.

    Article  CAS  PubMed  Google Scholar 

  53. Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Delmas P, Patel A, et al. Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. J Mol Cell Cardiol. 2010;48(1):83–9. doi:10.1016/j.yjmcc.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  54. Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci. 2010;1192(1):422–8. doi:10.1111/j.1749-6632.2009.05243.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, et al. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 2011;25(7):2418–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Leucht P, Monica SD, Temiyasathit S, Lenton K, Manu A, Longaker MT, et al. Primary cilia act as mechanosensors during bone healing around an implant. Med Eng Phys. 2013;35(3):392–402. doi:10.1016/j.medengphy.2012.06.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Xiao Z, Zhang S, Cao L, Qiu N, David V, Quarles LD. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation. J Biol Chem. 2010;285(2):1177–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem. 2008;283(18):12624–34. doi:10.1074/jbc.M710407200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Qiu N, Xiao Z, Cao L, David V, Quarles LD. Conditional mesenchymal disruption of pkd1 results in osteopenia and polycystic kidney disease. PLoS One. 2012;7(9):e46038. doi:10.1371/journal.pone.0046038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Qiu N, Zhou H, Xiao Z. Downregulation of PKD1 by shRNA results in defective osteogenic differentiation via cAMP/PKA pathway in human MG-63 cells. J Cell Biochem. 2012;113(3):967–76. doi:10.1002/jcb.23426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Arac D, Aust G, Calebiro D, Engel FB, Formstone C, Goffinet A, et al. Dissecting signaling and functions of adhesion G protein-coupled receptors. Ann N Y Acad Sci. 2012;1276:1–25. doi:10.1111/j.1749-6632.2012.06820.x.

    Article  PubMed  Google Scholar 

  62. Arac D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Sudhof TC, et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 2012;31(6):1364–78. doi:10.1038/emboj.2012.26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet. 1997;16(2):179–83.

    Article  CAS  PubMed  Google Scholar 

  64. Qian F, Wei W, Germino G, Oberhauser A. The nanomechanics of polycystin-1 extracellular region. J Biol Chem. 2005;280(49):40723–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Oatley P, Stewart AP, Sandford R, Edwardson JM. Atomic force microscopy imaging reveals the domain structure of polycystin-1. Biochemistry. 2012;51(13):2879–88. doi:10.1021/bi300134b.

    Article  CAS  PubMed  Google Scholar 

  66. Dalagiorgou G, Basdra EK, Papavassiliou AG. Polycystin-1: function as a mechanosensor. Int J Biochem Cell Biol. 2010;42(10):1610–3. doi:10.1016/j.biocel.2010.06.017.

    Article  CAS  PubMed  Google Scholar 

  67. Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor Runx2-II. J Biol Chem. 2008;283:12624–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mesner LD, Ray B, Hsu YH, Manichaikul A, Lum E, Bryda EC, et al. Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. J Clin Invest. 2014;124(6):2736–49. doi:10.1172/JCI73072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Qiu N, Cao L, David V, Darryl Quarles L, Xiao Z. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS ONE. 2010;5(12):e15240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci. 2012;125(8):1945–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Qiu N, Zhou H, Xiao Z. Downregulation of PKD1 by shRNA results in defective osteogenic differentiation via cAMP/PKA pathway in human MG-63 cells. J Cell Biochem. 2012;113(3):967–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, et al. Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J. 2012;26(4):1663–71. doi:10.1096/fj.11-193649.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, et al. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 2011;25(7):2418–32. doi:10.1096/fj.10-180299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci. 2012;125(Pt 8):1945–57. doi:10.1242/jcs.095893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Qiu N, Cao L, David V, Quarles LD, Xiao Z. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS One. 2010;5(12):e15240. doi:10.1371/journal.pone.0015240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Xiao Z, Zhang S, Cao L, Qiu N, David V, Quarles LD. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation. J Biol Chem. 2010;285(2):1177–87. doi:10.1074/jbc.M109.050906.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Xiao ZS, Zhang SQ, Magenheimer BS, Calvet JP, Quarles LD. Polycystin-1 slective activation of Runx2-II isoform transcription is mediated through the calcium-PI3K/Akt pathway. J Bone Miner Res. 2007;22(Suppl 1):S41.

    Google Scholar 

  78. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med. 2007;13(12):1490–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Xiao Z, Cao L, Liang Y, Huang J, Stern AR, Dallas M, et al. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity. PLoS One. 2014;9(12):e114198. doi:10.1371/journal.pone.0114198.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Dalagiorgou G, Piperi C, Georgopoulou U, Adamopoulos C, Basdra EK, Papavassiliou AG. Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cell Mol Life Sci. 2013;70(1):167–80. doi:10.1007/s00018-012-1164-5.

    Article  CAS  PubMed  Google Scholar 

  81. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/beta-catenin pathway. PLoS One. 2014;9(3):e91730. doi:10.1371/journal.pone.0091730.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Khonsari RH, Ohazama A, Raouf R, Kawasaki M, Kawasaki K, Porntaveetus T, et al. Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2). Hum Mol Genet. 2013;22(9):1873–85. doi:10.1093/hmg/ddt041.

    Article  CAS  PubMed  Google Scholar 

  83. Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, et al. Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet. 2001;10(21):2385–96.

    Article  CAS  PubMed  Google Scholar 

  84. Boulter C, Mulroy S, Webb S, Fleming S, Brindle K, Sandford R. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A. 2001;98(21):12174–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Turco AE, Padovani EM, Chiaffoni GP, Peissel B, Rossetti S, Marcolongo A, et al. Molecular genetic diagnosis of autosomal dominant polycystic kidney disease in a newborn with bilateral cystic kidneys detected prenatally and multiple skeletal malformations. J Med Genet. 1993;30(5):419–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Lindergard B, Johnell O, Nilsson BE, Wiklund PE. Studies of bone morphology, bone densitometry and laboratory data in patients on maintenance hemodialysis treatment. Nephron. 1985;39(2):122–9.

    Article  CAS  PubMed  Google Scholar 

  87. Pavik I, Jaeger P, Kistler AD, Poster D, Krauer F, Cavelti-Weder C, et al. Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate. Kidney Int. 2011;79(2):234–40. doi:10.1038/ki.2010.375.

    Article  CAS  PubMed  Google Scholar 

  88. Losekoot M, Ruivenkamp CA, Tholens AP, Grimbergen JE, Vijfhuizen L, Vermeer S, et al. Neonatal onset autosomal dominant polycystic kidney disease (ADPKD) in a patient homozygous for a PKD2 missense mutation due to uniparental disomy. J Med Genet. 2012;49(1):37–40. doi:10.1136/jmedgenet-2011-100452.

    Article  CAS  PubMed  Google Scholar 

  89. McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol. 2007;26(4):234–46.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Q, Murcia NS, Chittenden LR, Richards WG, Michaud EJ, Woychik RP, et al. Loss of the Tg737 protein results in skeletal patterning defects. Dev Dyn. 2003;227(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  91. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005;1(4):e53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet. 2006;38(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  93. Tayeh MK, Yen HJ, Beck JS, Searby CC, Westfall TA, Griesbach H, et al. Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet. 2008;17(13):1956–67. doi:10.1093/hmg/ddn093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Kaushik AP, Martin JA, Zhang Q, Sheffield VC, Morcuende JA. Cartilage abnormalities associated with defects of chondrocytic primary cilia in Bardet-Biedl syndrome mutant mice. J Orthop Res. 2009;27(8):1093–9. doi:10.1002/jor.20855.

    Article  PubMed  Google Scholar 

  95. Baala L, Audollent S, Martinovic J, Ozilou C, Babron MC, Sivanandamoorthy S, et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet. 2007;81(1):170–9. doi:10.1086/519494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Khaddour R, Smith U, Baala L, Martinovic J, Clavering D, Shaffiq R, et al. Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype-phenotype correlation. Mutation in brief #960. Online. Hum Mutat. 2007;28(5):523–4. doi:10.1002/humu.9489.

    Article  PubMed  Google Scholar 

  97. Xiao ZS, Quarles LD. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci. 2010;1192:410–21. doi:10.1111/j.1749-6632.2009.05239.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104(33):13325–30. doi:10.1073/pnas.0700636104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development. 2007;134(11):2159–69. doi:10.1242/dev.001586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 2010;24(8):2859–68. doi:10.1096/fj.09-148007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Uzbekov RE, Maurel DB, Aveline PC, Pallu S, Benhamou CL, Rochefort GY. Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can. 2012;18(6):1430–41. doi:10.1017/S1431927612013281.

    CAS  Google Scholar 

  102. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104: 13325–13330.

  103. Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, et al. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One. 2012;7(3):e33368. doi:10.1371/journal.pone.0033368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Burr DB. The 35th International Sun Valley Workshop on Skeletal Tissue Biology. J Musculoskelet Neuronal Interact. 2005;5(4):307–8.

    Google Scholar 

  105. Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, et al. Intraflagellar transport is essential for endochondral bone formation. Development. 2007;134(2):307–16.

    Article  CAS  PubMed  Google Scholar 

  106. Lee KL, Hoey DA, Spasic M, Tang T, Hammond HK, Jacobs CR. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. FASEB J. 2014;28(3):1157–65. doi:10.1096/fj.13-240432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. O'Connor AK, Malarkey EB, Berbari NF, Croyle MJ, Haycraft CJ, Bell PD, et al. An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia. 2013;2(1):8. doi:10.1186/2046-2530-2-8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol. 2008;294(3):F542–53. doi:10.1152/ajprenal.00201.2007.

    CAS  Google Scholar 

  109. Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6. doi:10.1073/pnas.0605266104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Cui CB, Cooper LF, Yang X, Karsenty G, Aukhil I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol Cell Biol. 2003;23(3):1004–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Jung H, Lee MS, Jang EJ, Ahn JH, Kang NS, Yoo SE, et al. Augmentation of PPARgamma-TAZ interaction contributes to the anti-adipogenic activity of KR62980. Biochem Pharmacol. 2009;78(10):1323–9. doi:10.1016/j.bcp.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  112. Yang JY, Cho SW, An JH, Jung JY, Kim SW, Kim SY, et al. Osteoblast-targeted overexpression of TAZ increases bone mass in vivo. PLoS One. 2013;8(2):e56585. doi:10.1371/journal.pone.0056585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309(5737):1074–8. doi:10.1126/science.1110955.

    Article  CAS  PubMed  Google Scholar 

  114. Hao J, Zhang Y, Wang Y, Ye R, Qiu J, Zhao Z, et al. Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell Signal. 2014;26(2):186–91. doi:10.1016/j.cellsig.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  115. Merrick D, Bertuccio CA, Chapin HC, Lal M, Chauvet V, Caplan MJ. Polycystin-1 cleavage and the regulation of transcriptional pathways. Pediatr Nephrol. 2014;29(4):505–11. doi:10.1007/s00467-013-2548-y.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, et al. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol. 2007;27(18):6383–95. doi:10.1128/MCB.00254-07.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest. 2004;114(10):1433–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. J Cell Biol. 2010;191(4):701–10. doi:10.1083/jcb.201006173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Akhter MP, Wells DJ, Short SJ, Cullen DM, Johnson ML, Haynatzki GR, et al. Bone biomechanical properties in LRP5 mutant mice. Bone. 2004;35(1):162–9. doi:10.1016/j.bone.2004.02.018.

    Article  CAS  PubMed  Google Scholar 

  120. Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711. doi:10.1074/jbc.M601000200.

    Article  CAS  PubMed  Google Scholar 

  121. Zhao L, Shim JW, Dodge TR, Robling AG, Yokota H. Inactivation of Lrp5 in osteocytes reduces young's modulus and responsiveness to the mechanical loading. Bone. 2013;54(1):35–43. doi:10.1016/j.bone.2013.01.033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Saxon LK, Jackson BF, Sugiyama T, Lanyon LE, Price JS. Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V High Bone Mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone. 2011;49(2):184–93. doi:10.1016/j.bone.2011.03.683.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O'Brien CA, Manolagas SC, et al. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem. 2007;282(35):25501–8.

    Article  CAS  PubMed  Google Scholar 

  124. Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem. 2007;282(28):20715–27.

    Article  CAS  PubMed  Google Scholar 

  125. Windahl SH, Saxon L, Borjesson AE, Lagerquist MK, Frenkel B, Henning P, et al. Estrogen receptor-alpha is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J Bone Miner Res. 2013;28(2):291–301. doi:10.1002/jbmr.1754.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci U S A. 2010;107(31):13648–53. doi:10.1073/pnas.1009382107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13(9):591–600. doi:10.1038/nrm3416.

    Article  CAS  PubMed  Google Scholar 

  128. Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res. 2005;20(7):1103–13. doi:10.1359/JBMR.050210.

    Article  CAS  PubMed  Google Scholar 

  129. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem. 2006;281(42):31720–8. doi:10.1074/jbc.M602308200.

    Article  CAS  PubMed  Google Scholar 

  130. Kitase Y, Barragan L, Qing H, Kondoh S, Jiang JX, Johnson ML, et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res. 2010;25(12):2657–68. doi:10.1002/jbmr.168.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Javaheri B, Stern AR, Lara N, Dallas M, Zhao H, Liu Y, et al. Deletion of a single beta-catenin allele in osteocytes abolishes the bone anabolic response to loading. J Bone Miner Res. 2014;29(3):705–15. doi:10.1002/jbmr.2064.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Jiang JX, Siller-Jackson AJ, Burra S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front Biosci. 2007;12:1450–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Huo B, Lu XL, Costa KD, Xu Q, Guo XE. An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium. 2010;47(3):234–41. doi:10.1016/j.ceca.2009.12.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol. 2007;212(1):207–14. doi:10.1002/jcp.21021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, et al. PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology. 2001;142(8):3464–73. doi:10.1210/endo.142.8.8338.

    Article  CAS  PubMed  Google Scholar 

  136. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts–correlation with prostaglandin upregulation. Biochem Biophys Res Commun. 1995;217(2):640–8.

    Article  CAS  PubMed  Google Scholar 

  137. Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ. Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res. 2000;15(2):209–17. doi:10.1359/jbmr.2000.15.2.209.

    Article  CAS  PubMed  Google Scholar 

  138. Ziambaras K, Lecanda F, Steinberg TH, Civitelli R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res. 1998;13(2):218–28. doi:10.1359/jbmr.1998.13.2.218.

    Article  CAS  PubMed  Google Scholar 

  139. Taylor AF, Saunders MM, Shingle DL, Cimbala JM, Zhou Z, Donahue HJ. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol. 2007;292(1):C545–52. doi:10.1152/ajpcell.00611.2005.

    Article  CAS  PubMed  Google Scholar 

  140. Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta. 2012;1818(8):1909–18. doi:10.1016/j.bbamem.2011.09.018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Loiselle AE, Jiang JX, Donahue HJ. Gap junction and hemichannel functions in osteocytes. Bone. 2013;54(2):205–12. doi:10.1016/j.bone.2012.08.132.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S, et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One. 2011;6(8):e23516. doi:10.1371/journal.pone.0023516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, et al. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res. 2013;31(7):1075–81. doi:10.1002/jor.22341.

    Article  CAS  PubMed  Google Scholar 

  144. Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res. 2012;27(11):2359–72. doi:10.1002/jbmr.1687.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Grimston SK, Goldberg DB, Watkins M, Brodt MD, Silva MJ, Civitelli R. Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res. 2011;26(9):2151–60. doi:10.1002/jbmr.425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Lloyd SA, Loiselle AE, Zhang Y, Donahue HJ. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone. 2013;57(1):76–83. doi:10.1016/j.bone.2013.07.022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell. 2011;22(8):1240–51. doi:10.1091/mbc.E10-07-0571.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res. 2012;27(2):374–89. doi:10.1002/jbmr.548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, et al. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res. 2009;104(9):1123–30. doi:10.1161/CIRCRESAHA.108.192930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A. 2012;109(9):3359–64. doi:10.1073/pnas.1115967109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Batra N, Jiang JX. “INTEGRINating” the connexin hemichannel function in bone osteocytes through the action of integrin alpha5. Commun Integr Biol. 2012;5(5):516–8. doi:10.4161/cib.21322.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cells Mater. 2012;24:278–91.

    CAS  Google Scholar 

  153. Marie PJ. Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol. 2013;9(5):288–95. doi:10.1038/nrendo.2013.4.

    Article  CAS  PubMed  Google Scholar 

  154. Litzenberger JB, Kim JB, Tummala P, Jacobs CR. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int. 2010;86(4):325–32. doi:10.1007/s00223-010-9343-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Wu H, Teng PN, Jayaraman T, Onishi S, Li J, Bannon L, et al. Dentin matrix protein 1 (DMP1) signals via cell surface integrin. J Biol Chem. 2011;286(34):29462–9. doi:10.1074/jbc.M110.194746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken). 2009;292(3):355–63. doi:10.1002/ar.20869.

    Article  CAS  Google Scholar 

  157. Watabe H, Furuhama T, Tani-Ishii N, Mikuni-Takagaki Y. Mechanotransduction activates alpha(5)beta(1) integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res. 2011;317(18):2642–9. doi:10.1016/j.yexcr.2011.07.015.

    Article  CAS  PubMed  Google Scholar 

  158. Carvalho RS, Bumann A, Schaffer JL, Gerstenfeld LC. Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem. 2002;84(3):497–508.

    Article  CAS  PubMed  Google Scholar 

  159. Young SR, Gerard-O'Riley R, Kim JB, Pavalko FM. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J Bone Miner Res. 2009;24(3):411–24. doi:10.1359/jbmr.081102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages JC, et al. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A. 2009;106(44):18587–91. doi:10.1073/pnas.0812334106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Zimmerman D, Jin F, Leboy P, Hardy S, Damsky C. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev Biol. 2000;220(1):2–15. doi:10.1006/dbio.2000.9633.

    Article  CAS  PubMed  Google Scholar 

  162. Iwaniec UT, Wronski TJ, Amblard D, Nishimura Y, van der Meulen MC, Wade CE, et al. Effects of disrupted beta1-integrin function on the skeletal response to short-term hindlimb unloading in mice. J Appl Physiol. 2005;98(2):690–6. doi:10.1152/japplphysiol.00689.2004.

    Article  CAS  PubMed  Google Scholar 

  163. Phillips JA, Almeida EA, Hill EL, Aguirre JI, Rivera MF, Nachbandi I, et al. Role for beta1 integrins in cortical osteocytes during acute musculoskeletal disuse. Matrix Biol. 2008;27(7):609–18. doi:10.1016/j.matbio.2008.05.003.

    Article  CAS  PubMed  Google Scholar 

  164. Shekaran A, Shoemaker JT, Kavanaugh TE, Lin AS, LaPlaca MC, Fan Y, et al. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone. 2014;68:131–41. doi:10.1016/j.bone.2014.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Srouji S, Ben-David D, Fromigue O, Vaudin P, Kuhn G, Muller R, et al. Lentiviral-mediated integrin alpha5 expression in human adult mesenchymal stromal cells promotes bone repair in mouse cranial and long-bone defects. Hum Gene Ther. 2012;23(2):167–72. doi:10.1089/hum.2011.059.

    Article  CAS  PubMed  Google Scholar 

  166. Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics. 2008;48(4):330–8. doi:10.1016/j.ultras.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  167. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biolumin Chemilumin. 2008;283(9):5866–75. doi:10.1074/jbc.M705092200.

    CAS  Google Scholar 

  168. Rath AL, Bonewald LF, Ling J, Jiang JX, Van Dyke ME, Nicolella DP. Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. J Biomech. 2010. doi:10.1016/j.jbiomech.2010.01.030.

    PubMed Central  PubMed  Google Scholar 

  169. Lee DS, Choung HW, Kim HJ, Gronostajski RM, Yang YI, Ryoo HM, et al. NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells. 2014;32(9):2467–79. doi:10.1002/stem.1733.

    Article  CAS  PubMed  Google Scholar 

  170. Waki H, Nakamura M, Yamauchi T, Wakabayashi K, Yu J, Hirose-Yotsuya L, et al. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet. 2011;7(10):e1002311. doi:10.1371/journal.pgen.1002311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Niziolek PJ, Farmer TL, Cui Y, Turner CH, Warman ML, Robling AG. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes. Bone. 2011;49(5):1010–9. doi:10.1016/j.bone.2011.07.034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Boca M, D'Amato L, Distefano G, Polishchuk RS, Germino GG, Boletta A. Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3beta-dependent cell cell mechanical adhesion. Mol Biol Cell. 2007;18(10):4050–61. doi:10.1091/mbc.E07-02-0142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Boca M, Distefano G, Qian F, Bhunia AK, Germino GG, Boletta A. Polycystin-1 induces resistance to apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway. J Am Soc Nephrol. 2006;17(3):637–47. doi:10.1681/ASN.2005050534.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Kim E, Arnould T, Sellin LK, Benzing T, Fan MJ, Gruning W, et al. The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem. 1999;274(8):4947–53.

    Article  CAS  PubMed  Google Scholar 

  175. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating RUNX2 gene expression. J Biol Chem. 2005;280:33132–40.

    Article  CAS  PubMed  Google Scholar 

  176. Chang CF, Serra R. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and beta-catenin activity in post-natal growth plate. J Orthop Res. 2013;31(3):350–6. doi:10.1002/jor.22237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012;1(1):7. doi:10.1186/2046-2530-1-7.

  178. Gerdes JM, Katsanis N. Ciliary function and Wnt signal modulation. Curr Top Dev Biol. 2008;85:175–95. doi:10.1016/S0070-2153(08)00807-7.

    Article  CAS  PubMed  Google Scholar 

  179. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol. 2008;10(1):70–6. doi:10.1038/ncb1670.

    Article  CAS  PubMed  Google Scholar 

  180. Lancaster MA, Schroth J, Gleeson JG. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol. 2011;13(6):700–7. doi:10.1038/ncb2259.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  181. Astudillo P, Larrain J. Wnt signaling and cell-matrix adhesion. Curr Mol Med. 2014;14(2):209–20.

    Article  CAS  PubMed  Google Scholar 

  182. Amin N, Vincan E. The Wnt signaling pathways and cell adhesion. Front Biosci. 2012;17:784–804.

    Article  CAS  Google Scholar 

  183. Astudillo P, Carrasco H, Larrain J. Syndecan-4 inhibits Wnt/beta-catenin signaling through regulation of low-density-lipoprotein receptor-related protein (LRP6) and R-spondin 3. Int J Biochem Cell Biol. 2014;46:103–12. doi:10.1016/j.biocel.2013.11.012.

    Article  CAS  PubMed  Google Scholar 

  184. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, et al. Role of TAZ as mediator of Wnt signaling. Cell. 2012;151(7):1443–56. doi:10.1016/j.cell.2012.11.027.

    Article  CAS  PubMed  Google Scholar 

  185. Byun MR, Hwang JH, Kim AR, Kim KM, Hwang ES, Yaffe MB, et al. Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ. 2014;21(6):854–63. doi:10.1038/cdd.2014.8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Kaneko K, Ito M, Naoe Y, Lacy-Hulbert A, Ikeda K. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochem Biophys Res Commun. 2014;447(2):352–7. doi:10.1016/j.bbrc.2014.04.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Chang C, Goel HL, Gao H, Pursell B, Shultz LD, Greiner DL, et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the alpha6Bbeta1 integrin to sustain breast cancer stem cells. Genes Dev. 2015;29(1):1–6. doi:10.1101/gad.253682.114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  188. Reich KM, McAllister TN, Gudi S, Frangos JA. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology. 1997;138(3):1014–8.

    Article  CAS  PubMed  Google Scholar 

  189. Garcia M, Knight MM. Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J Orthop Res. 2010;28(4):510–5. doi:10.1002/jor.21025.

    CAS  PubMed  Google Scholar 

  190. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, et al. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res. 1999;14(7):1123–31. doi:10.1359/jbmr.1999.14.7.1123.

    Article  CAS  PubMed  Google Scholar 

  191. Mehrotra M, Saegusa M, Voznesensky O, Pilbeam C. Role of Cbfa1/Runx2 in the fluid shear stress induction of COX-2 in osteoblasts. Biochem Biophys Res Commun. 2006;341(4):1225–30. doi:10.1016/j.bbrc.2006.01.084.

    Article  CAS  PubMed  Google Scholar 

  192. Forwood MR. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res. 1996;11(11):1688–93.

    Article  CAS  PubMed  Google Scholar 

  193. AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res. 2009;104(7):860–9. doi:10.1161/CIRCRESAHA.108.192765.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Xu H, Guan Y, Wu J, Zhang J, Duan J, An L, et al. Polycystin 2 is involved in the nitric oxide production in responding to oscillating fluid shear in MLO-Y4 cells. J Biomech. 2014;47(2):387–91. doi:10.1016/j.jbiomech.2013.11.018.

    Article  PubMed  Google Scholar 

  195. Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J. 2014;28(1):430–9. doi:10.1096/fj.13-231894.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Hoey DA, Tormey S, Ramcharan S, O'Brien FJ, Jacobs CR. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells. 2012;30(11):2561–70. doi:10.1002/stem.1235.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  197. Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci U S A. 2007;104(11):4389–94. doi:10.1073/pnas.0700499104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. Turner CH, Robling AG. Exercise as an anabolic stimulus for bone. Curr Pharm Des. 2004;10(21):2629–41.

    Article  CAS  PubMed  Google Scholar 

  199. Liu PY, Brummel-Smith K, Ilich JZ. Aerobic exercise and whole-body vibration in offsetting bone loss in older adults. J Aging Res. 2011;2011:379674. doi:10.4061/2011/379674.

    Article  PubMed Central  PubMed  Google Scholar 

  200. Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res. 2014. doi:10.1002/jbmr.2185.

    PubMed Central  Google Scholar 

  201. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27(9):1896–906. doi:10.1002/jbmr.1647.

    Article  CAS  PubMed  Google Scholar 

  202. Martinez de Albornoz P, Khanna A, Longo UG, Forriol F, Maffulli N. The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull. 2011;100:39–57. doi:10.1093/bmb/ldr006.

  203. Griffin XL, Smith N, Parsons N, Costa ML. Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst Rev. 2012;2:CD008579. doi:10.1002/14651858.CD008579.pub2.

    PubMed  Google Scholar 

  204. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4. doi:10.1038/35088122.

    Article  CAS  PubMed  Google Scholar 

  205. Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 2001;15(12):2225–9. doi:10.1096/fj.01-0166com.

    Article  CAS  PubMed  Google Scholar 

  206. Rubin C, Turner AS, Muller R, Mittra E, McLeod K, Lin W, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res. 2002;17(2):349–57. doi:10.1359/jbmr.2002.17.2.349.

    Article  PubMed  Google Scholar 

  207. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464–74. doi:10.1359/jbmr.060612.

    Article  PubMed  Google Scholar 

  208. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51. doi:10.1359/JBMR.0301251.

    Article  PubMed  Google Scholar 

  209. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985;37(4):411–7.

    Article  CAS  PubMed  Google Scholar 

  210. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 4. Mechanical influences on intact fibrous tissues. Anat Rec. 1990;226(4):433–9. doi:10.1002/ar.1092260405.

    Article  CAS  PubMed  Google Scholar 

  211. Qin YX, Lin W, Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng. 2002;30(5):693–702.

    Article  PubMed  Google Scholar 

  212. Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone. 2002;30(3):445–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grant from NIH (DK083303).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Darryl Quarles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Quarles, L.D. Physiological mechanisms and therapeutic potential of bone mechanosensing. Rev Endocr Metab Disord 16, 115–129 (2015). https://doi.org/10.1007/s11154-015-9313-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-015-9313-4

Keywords

Navigation