Skip to main content

Advertisement

Log in

The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Nuclear factor erythroid 2 related factor 2 (Nrf2) is a key regulator of antioxidant signaling that may prevent the development of metabolic syndrome and related cardiovascular diseases. However, emerging evidence shows that lack of Nrf2 could ameliorate insulin resistance, adipogenesis and adipocyte differentiation. Consistent with this, overexpression of Nrf2 gene could also cause insulin resistance under certain conditions. Furthermore, an increasing number of studies indicate that redox balance can be a critical element that contributes to the contradictory effects of Nrf2 on insulin sensitivity and resistance. Reactive oxygen species can promote normal insulin-mediated signal transduction under physiological conditions but also induce insulin resistance under certain pathological conditions. Therefore, the contradictory effects of Nrf2 on insulin signaling pathways may be related to its regulation of redox homeostasis. This review attempts to summarize the latest developments in our understanding of the mechanisms of Nrf2-mediated signaling and its role in the modulation of metabolic homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Renehan AG et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    Article  PubMed  Google Scholar 

  2. Swinburn BA et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14.

    Article  PubMed  Google Scholar 

  3. Finkelstein EA et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.

    Article  PubMed  Google Scholar 

  4. Pischon T et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105–20.

    Article  CAS  PubMed  Google Scholar 

  5. Go AS et al. Heart disease and stroke statistics–2013 update: a report from the American heart association. Circulation. 2013;127(1):e6–245.

    Article  PubMed  Google Scholar 

  6. Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220(2):T1–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhai L, Ballinger SW, Messina JL. Role of reactive oxygen species in injury-induced insulin resistance. Mol Endocrinol. 2011;25(3):492–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Maddux BA et al. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of alpha-lipoic acid. Diabetes. 2001;50(2):404–10.

    Article  CAS  PubMed  Google Scholar 

  9. Padmanabhan B et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell. 2006;21(5):689–700.

    Article  CAS  PubMed  Google Scholar 

  10. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16(2):123–40.

    Article  CAS  PubMed  Google Scholar 

  11. McMahon M et al. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003;278(24):21592–600.

    Article  CAS  PubMed  Google Scholar 

  12. Wakabayashi N et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A. 2004;101(7):2040–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ishii T, Itoh K, Yamamoto M. Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol. 2002;348:182–90.

    Article  CAS  PubMed  Google Scholar 

  14. de Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes. 2011;60(11):2683–4.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Loh K et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10(4):260–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tanaka Y et al. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol Exp Ther. 2008;325(2):655–64.

    Article  CAS  PubMed  Google Scholar 

  17. Bonnard C et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118(2):789–800.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944–8.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson EJ et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee HY et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010;12(6):668–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55(Supplement 2):S9–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tirosh A et al. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem. 1999;274(15):10595–602.

    Article  CAS  PubMed  Google Scholar 

  23. Kaneto H et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J Bio Chem. 2001;276(33):31099–104.

    Article  CAS  Google Scholar 

  24. Mahadev K et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol. 2004;24(5):1844–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  26. Ristow M et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gliemann L et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(Pt 20):5047–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bocci V et al. An integrated medical treatment for type-2 diabetes. Diabetes Metab Syndr. 2014;8(1):57–61.

    Article  PubMed  Google Scholar 

  29. Watson JD. Type 2 diabetes as a redox disease. Lancet. 2014;383(9919):841–3.

    Article  PubMed  Google Scholar 

  30. Li Y et al. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes (Lond). 2012;36(12):1503–13.

    Article  CAS  Google Scholar 

  31. Bjelakovic G et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention. J Am Med Assoc. 2007;297(8):842–57.

    Article  CAS  Google Scholar 

  32. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006;46(113).

  33. Gaikwad A et al. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J Biol Chem. 2001;276(25):22559–64.

    Article  CAS  PubMed  Google Scholar 

  34. Kendig EL et al. Lipid metabolism and body composition in Gclm(−/−) mice. Toxicol Appl Pharmacol. 2011;257(3):338–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. McClung JP et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A. 2004;101(24):8852–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chartoumpekis DV et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes. 2011;60(10):2465–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Li H, Zhang J, Jia W. Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med. 2013;7(1):25–30.

    Article  PubMed  Google Scholar 

  38. Kliewer SA, Mangelsdorf DJ. Fibroblast growth factor 21: from pharmacology to physiology. Am J Clin Nutr. 2010;91(1):254S–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhang YK et al. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. Toxicol Appl Pharmacol. 2012;264(3):305–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Pi J et al. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem. 2010;285(12):9292–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Collins AR et al. Myeloid deletion of nuclear factor erythroid 2-related factor 2 increases atherosclerosis and liver injury. Arterioscler Thromb Vasc Biol. 2012;32(12):2839–46.

    Article  CAS  PubMed  Google Scholar 

  42. Meher AK et al. Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med. 2012;52(9):1708–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Xue P et al. Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes. 2013;62(3):845–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yu Z et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2alpha subunit (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54(4):922–34.

    Article  CAS  PubMed  Google Scholar 

  45. Xu J et al. Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes. 2012;61(12):3208–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Shin S et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol. 2009;620(1–3):138–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gao S et al. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol. 2013;59:739–47.

    Article  CAS  PubMed  Google Scholar 

  48. Bahadoran Z, Mirmiran P, Azizi F. Potential efficacy of broccoli sprouts as a unique supplement for management of type 2 diabetes and its complications. J Med Food. 2013;16(5):375–82.

    Article  CAS  PubMed  Google Scholar 

  49. He HJ et al. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes. 2012;3(5):94–104.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Hoehn KL et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A. 2009;106(42):17787–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. D’Apolito M et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J Clin Invest. 2010;120(1):203–13.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Lee BH et al. Ankaflavin: a natural novel PPARgamma agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radic Biol Med. 2012;53(11):2008–16.

    Article  CAS  PubMed  Google Scholar 

  53. Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zhang W et al. ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes Dev. 2013;27(4):441–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Choi KM et al. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. J Nutr Biochem. 2014;25(2):201–7.

    Article  PubMed  Google Scholar 

  56. Kang OH et al. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur Rev Med Pharmacol Sci. 2013;17(19):2578–86.

    CAS  PubMed  Google Scholar 

  57. Kim TH et al. An active metabolite of oltipraz (M2) increases mitochondrial fuel oxidation and inhibits lipogenesis in the liver by dually activating AMPK. Br J Pharmacol. 2013;168(7):1647–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cheng Z et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med. 2009;15(11):1307–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. More VR et al. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radic Biol Med. 2013;61C:85–94.

    Article  Google Scholar 

  60. Yates MS et al. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis. 2009;30(6):1024–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Huang X et al. The COP9 signalosome, cullin 3 and Keap1 supercomplex regulates CHOP stability and adipogenesis. Biol Open. 2012;1(8):705–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kitteringham NR et al. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J Proteomics. 2010;73(8):1612–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Wu KC, Cui JY, Klaassen CD. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci. 2011;123(2):590–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kay HY et al. Nrf2 inhibits LXRalpha-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal. 2011;15(8):2135–46.

    Article  CAS  PubMed  Google Scholar 

  65. Huang J et al. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1211–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lin Z et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.

    Article  CAS  PubMed  Google Scholar 

  67. Straczkowski M et al. Serum fibroblast growth factor 21 in human obesity: regulation by insulin infusion and relationship with glucose and lipid oxidation. Int J Obes (Lond). 2013;37(10):1386–90.

    Article  CAS  Google Scholar 

  68. Yoon JC et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413(6852):131–8.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang YK et al. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol. 2010;245(3):326–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jin SH et al. Resveratrol inhibits LXRalpha-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicol Appl Pharmacol. 2013;271(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  71. Han S et al. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol. 2013;29(2):75–84.

    Article  CAS  PubMed  Google Scholar 

  72. Merry TL et al. High-fat-fed obese glutathione peroxidase 1-deficient mice exhibit defective insulin secretion but protection from hepatic steatosis and liver damage. Antioxid Redox Signal. 2014;20(14):2114–29.

    Article  CAS  PubMed  Google Scholar 

  73. Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 2005;40(4):229–42.

    Article  CAS  PubMed  Google Scholar 

  74. Rosen ED. The transcriptional basis of adipocyte development. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  75. Vigouroux C et al. Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol. 2011;43(6):862–76.

    Article  CAS  PubMed  Google Scholar 

  76. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome–an allostatic perspective. Biochim Biophys Acta. 2010;1801(3):338–49.

    Article  CAS  PubMed  Google Scholar 

  77. Schneider KS, Chan JY. Emerging role of Nrf2 in adipocytes and adipose biology. Adv Nutr. 2013;4(1):62–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Hou Y et al. Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein beta during adipogenesis. Free Radic Biol Med. 2012;52(2):462–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Chang YC et al. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med. 2013;5(8):1165–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Shin S et al. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol. 2007;27(20):7188–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Chorley BN et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 2012;40(15):7416–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Uruno A et al. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol. 2013;33(15):2996–3010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Barazzoni R et al. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-kappaB inhibitor (IkappaB)-nuclear factor-kappaB (NFkappaB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia. 2012;55(3):773–82.

    Article  CAS  PubMed  Google Scholar 

  84. Song MY et al. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol Appl Pharmacol. 2009;235(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  85. Aleksunes LM et al. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice. J Pharmacol Exp Ther. 2010;333(1):140–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Yagishita Y et al. Nrf2 protects pancreatic beta-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes. 2014;63(2):605–18.

    Article  CAS  PubMed  Google Scholar 

  87. Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008;31 Suppl 2:S185–9.

    Article  CAS  PubMed  Google Scholar 

  88. de Champlain J et al. Oxidative stress in hypertension. Clin Exp Hypertens. 2004;26(7–8):593–601.

    Article  PubMed  Google Scholar 

  89. Chen TM et al. Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int J Mol Sci. 2013;14(2):2684–706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Gomez-Guzman M et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med. 2012;52(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  91. Li J et al. Up-regulation of p27(kip1) contributes to Nrf2-mediated protection against angiotensin II-induced cardiac hypertrophy. Cardiovasc Res. 2011;90(2):315–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Cited studies from the authors’ laboratories were supported in part by the grants from the National Natural Science Foundation of China (No. 81370318, to ZY; No. 81270293, to YHW; No. 81400281, to S.Z) and the American Diabetes Association (1-11-BA-17 & 7-14-BS-18, to LC).

Conflict of Interest

The authors declare that there are not conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zheng or Lu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, S., Jiang, X. et al. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Rev Endocr Metab Disord 16, 35–45 (2015). https://doi.org/10.1007/s11154-014-9305-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-014-9305-9

Keywords

Navigation