Skip to main content

Advertisement

Log in

Genetic models of PGC-1 and glucose metabolism and homeostasis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Type II diabetes and its complications are a tremendous health burden throughout the world. Our understanding of the changes that lead to glucose imbalance and insulin resistance and ultimately diabetes remain incompletely understood. Many signaling and transcriptional pathways have been identified as being important to maintain normal glucose balance, including that of the peroxisome proliferator activated receptor gamma coactivator (PGC-1) family. This family of transcriptional coactivators strongly regulates mitochondrial and metabolic biology in numerous organs. The use of genetic models of PGC-1s, including both tissue-specific overexpression and knock-out models, has helped to reveal the specific roles that these coactivators play in each tissue. This review will thus focus on the PGC-1s and recently developed genetic rodent models that have highlighted the importance of these molecules in maintaining normal glucose homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  2. Andersson U, Scarpulla RC. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol. 2001;21(11):3738–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277(3):1645–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70. doi:10.1016/j.cmet.2005.05.004.

    Article  PubMed  Google Scholar 

  5. Finck BN, Kelly DP. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Investig. 2006;116(3):615–22.

    Article  CAS  PubMed  Google Scholar 

  6. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413(6852):131–8.

    Article  CAS  PubMed  Google Scholar 

  7. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):179–83.

    Article  CAS  PubMed  Google Scholar 

  8. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Investig. 2000;106(7):847–56.

    Article  CAS  PubMed  Google Scholar 

  9. Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, et al. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009;15(3):259–66. doi:10.1038/nm.1910.

    Article  CAS  PubMed  Google Scholar 

  10. Wei W, Wang X, Yang M, Smith LC, Dechow PC, Wan Y. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 2010;11(6):503–16. doi:10.1016/j.cmet.2010.04.015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  12. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004;101(17):6570–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: A mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol. 2005;25(24):10684–94. doi:10.1128/MCB.25.24.10684-10694.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. [Research Support, U.S. Gov’t, P.H.S.]. Mol Cell Biol. 2005;25(4):1354–66. doi:10.1128/MCB.25.4.1354-1366.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20(5):1868–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–5.

    Article  CAS  PubMed  Google Scholar 

  17. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, et al. PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem. 2003;278(33):30843–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, et al. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. [Research Support, Non-U.S. Gov’t]. Diabetologia. 2001;44(12):2220–6. doi:10.1007/s001250100032.

    Article  CAS  PubMed  Google Scholar 

  19. Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, et al. A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. [Comparative Study Research Support, Non-U.S. Gov’t]. Diabetologia. 2002;45(5):740–3. doi:10.1007/s00125-002-0803-z.

    Article  CAS  PubMed  Google Scholar 

  20. Oberkofler H, Linnemayr V, Weitgasser R, Klein K, Xie M, Iglseder B, et al. Complex haplotypes of the PGC-1alpha gene are associated with carbohydrate metabolism and type 2 diabetes. [Research Support, Non-U.S. Gov’t]. Diabetes. 2004;53(5):1385–93.

    Article  CAS  PubMed  Google Scholar 

  21. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  22. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119(1):121–35.

    Article  CAS  PubMed  Google Scholar 

  23. Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A. 2007;104(12):5223–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, et al. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 2006;4(6):453–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liang H, Balas B, Tantiwong P, Dube J, Goodpaster BH, O’Doherty RM, et al. Whole body overexpression of PGC-1alpha has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab. 2009;296(4):E945–54.

    Article  CAS  PubMed  Google Scholar 

  27. He X, Sun C, Wang F, Shan A, Guo T, Gu W, et al. Peri-implantation lethality in mice lacking the PGC-1-related coactivator protein. [Research Support, Non-U.S. Gov’t]. Dev Dyn. 2012;241(5):975–83. doi:10.1002/dvdy.23769.

    Article  CAS  PubMed  Google Scholar 

  28. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Gene Dev. 2008;22(14):1948–61.

    Article  CAS  PubMed  Google Scholar 

  29. Choi CS, Befroy DE, Codella R, Kim S, Reznick RM, Hwang YJ, et al. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci U S A. 2008;105(50):19926–31. doi:10.1073/pnas.0810339105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Summermatter S, Shui G, Maag D, Santos G, Wenk MR, Handschin C. PGC-1alpha improves glucose homeostasis in skeletal muscle in an activity-dependent manner. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Diabetes. 2013;62(1):85–95. doi:10.2337/db12-0291.

    Article  CAS  PubMed  Google Scholar 

  31. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, et al. A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell. 2012;151(6):1319–31. doi:10.1016/j.cell.2012.10.050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, et al. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 2007;5(1):35–46. doi:10.1016/j.cmet.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  33. Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O. Skeletal muscle-specific expression of PGC-1alpha-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. [Research Support, Non-U.S. Gov’t]. PloS one. 2011;6(12):e28290. doi:10.1371/journal.pone.0028290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Handschin C, Choi CS, Chin S, Kim S, Kawamori D, Kurpad AJ, et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Investig. 2007;117(11):3463–74. doi:10.1172/JCI31785.

    Article  CAS  PubMed  Google Scholar 

  35. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 2010;12(6):633–42. doi:10.1016/j.cmet.2010.11.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rowe GC, Patten IS, Zsengeller ZK, El-Khoury R, Okutsu M, Bampoh S, et al. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep. 2013;3(5):1449–56. doi:10.1016/j.celrep.2013.04.023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bellafante E, Murzilli S, Salvatore L, Latorre D, Villani G, Moschetta A. Hepatic-specific activation of peroxisome proliferator-activated receptor gamma coactivator-1beta protects against steatohepatitis. [Research Support, Non-U.S. Gov’t]. Hepatology. 2013;57(4):1343–56. doi:10.1002/hep.26222.

    Article  CAS  PubMed  Google Scholar 

  38. Estall JL, Ruas JL, Choi CS, Laznik D, Badman M, Maratos-Flier E, et al. PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A. 2009;106(52):22510–5. doi:10.1073/pnas.0912533106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chambers KT, Chen Z, Crawford PA, Fu X, Burgess SC, Lai L, et al. Liver-specific PGC-1beta deficiency leads to impaired mitochondrial function and lipogenic response to fasting-refeeding. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. PloS one. 2012;7(12):e52645. doi:10.1371/journal.pone.0052645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, et al. Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A. 2012;109(24):9635–40. doi:10.1073/pnas.1207287109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, et al. Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. [Research Support, Non-U.S. Gov’t]. Cell Mol Life Sci. 2012;69(7):1153–65. doi:10.1007/s00018-011-0850-z.

    Article  CAS  PubMed  Google Scholar 

  42. Ma D, Li S, Lucas EK, Cowell RM, Lin JD. Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Biol Chem. 2010;285(50):39087–95. doi:10.1074/jbc.M110.151688.

    Article  CAS  PubMed  Google Scholar 

  43. Valtat B, Riveline JP, Zhang P, Singh-Estivalet A, Armanet M, Venteclef N, et al. Fetal PGC-1alpha overexpression programs adult pancreatic beta-cell dysfunction. [Research Support, Non-U.S. Gov’t]. Diabetes. 2013;62(4):1206–16. doi:10.2337/db12-0314.

    Article  CAS  PubMed  Google Scholar 

  44. Jove M, Salla J, Planavila A, Cabrero A, Michalik L, Wahli W, et al. Impaired expression of NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: Restoration by troglitazone. J Lipid Res. 2004;45(1):113–23.

    Article  CAS  PubMed  Google Scholar 

  45. Mensink M, Hesselink MK, Russell AP, Schaart G, Sels JP, Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. [Controlled Clinical Trial Research Support, Non-U.S. Gov’t]. Int J Obes. 2007;31(8):1302–10. doi:10.1038/sj.ijo.0803567.

    Article  CAS  Google Scholar 

  46. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. [Research Support, U.S. Gov’t, P.H.S.]. Proc Natl Acad Sci U S A. 2001;98(7):3820–5. doi:10.1073/pnas.061035098.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Handschin C, Spiegelman BM. PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. [Comment Letter]. Cell Metabol. 2011;13(4):351. doi:10.1016/j.cmet.2011.03.008. author reply 352.

    Article  CAS  Google Scholar 

  48. Zechner C, Leone TC, Kelly DP. Response to Handschin and Spiegelman. [Response]. Cell Metabol. 2011;13(4):352.

    Article  CAS  Google Scholar 

  49. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801. doi:10.1038/nature00904.

    Article  CAS  PubMed  Google Scholar 

  50. Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, et al. Muscle-specific expression of PPAR{gamma} coactivator-1{alpha} improves exercise performance and increases peak oxygen uptake. J Appl Physiol. 2008;104(5):1304–12.

    Article  CAS  PubMed  Google Scholar 

  51. Bruce CR, Hawley JA. Improvements in insulin resistance with aerobic exercise training: A lipocentric approach. [Research Support, Non-U.S. Gov’t Review]. Med Sci Sports Exerc. 2004;36(7):1196–201.

    CAS  PubMed  Google Scholar 

  52. van Dijk JW, Manders RJ, Tummers K, Bonomi AG, Stehouwer CD, Hartgens F, et al. Both resistance- and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin-treated and non-insulin-treated type 2 diabetic patients. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Diabetologia. 2012;55(5):1273–82. doi:10.1007/s00125-011-2380-5.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009;106(48):20405–10. doi:10.1073/pnas.0911570106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, et al. The transcriptional coactivator PGC-1{alpha} mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009;106(50):21401–6. doi:10.1073/pnas.0909131106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yoshioka T, Inagaki K, Noguchi T, Sakai M, Ogawa W, Hosooka T, et al. Identification and characterization of an alternative promoter of the human PGC-1alpha gene. [Research Support, Non-U.S. Gov’t]. Biochem Biophys Res Commun. 2009;381(4):537–43. doi:10.1016/j.bbrc.2009.02.077.

    Article  CAS  PubMed  Google Scholar 

  56. Finley LW, Lee J, Souza A, Desquiret-Dumas V, Bullock K, Rowe GC, et al. Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Proc Natl Acad Sci U S A. 2012;109(8):2931–6. doi:10.1073/pnas.1115813109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Nat Med. 2004;10(5):530–4. doi:10.1038/nm1044.

    Article  CAS  PubMed  Google Scholar 

  58. Biddinger SB, Hernandez-Ono A, Rask-Madsen C, Haas JT, Aleman JO, Suzuki R, et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Cell Metab. 2008;7(2):125–34. doi:10.1016/j.cmet.2007.11.013.

    Article  CAS  PubMed  Google Scholar 

  59. Li X, Monks B, Ge Q, Birnbaum MJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. [Research Support, N.I.H., Extramural]. Nature. 2007;447(7147):1012–6. doi:10.1038/nature05861.

    Article  CAS  PubMed  Google Scholar 

  60. Lustig Y, Ruas JL, Estall JL, Lo JC, Devarakonda S, Laznik D, et al. Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Gene Dev. 2011;25(12):1232–44. doi:10.1101/gad.2054711.

    Article  CAS  PubMed  Google Scholar 

  61. Dominy Jr JE, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Cell. 2012;48(6):900–13. doi:10.1016/j.molcel.2012.09.030.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Diabetes. 2009;58(7):1499–508. doi:10.2337/db08-1571.

    Article  CAS  PubMed  Google Scholar 

  63. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig. 2005;115(6):1627–35. doi:10.1172/JCI23606.

    Article  CAS  PubMed  Google Scholar 

  64. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Endocrinology. 2011;152(8):2996–3004. doi:10.1210/en.2011-0281.

    Article  CAS  PubMed  Google Scholar 

  65. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. [Review]. Mol Cell Endocrinol. 2010;316(2):129–39. doi:10.1016/j.mce.2009.08.018.

    Article  CAS  PubMed  Google Scholar 

  66. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. [Research Support, N.I.H., Extramural Review]. Nat Rev Mol Cell Biol. 2008;9(5):367–77. doi:10.1038/nrm2391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Semple RK, Crowley VC, Sewter CP, Laudes M, Christodoulides C, Considine RV, et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004;28(1):176–9. doi:10.1038/sj.ijo.0802482.

    Article  CAS  Google Scholar 

  68. Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, et al. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Arch Neurol. 2009;66(3):352–61. doi:10.1001/archneurol.2008.588.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Sci Transl Med. 2010;2(52):52ra73. doi:10.1126/scitranslmed.3001059.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Podolsky S, Leopold NA, Sax DS. Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet. 1972;1(7765):1356–8.

    Article  CAS  PubMed  Google Scholar 

  71. Helisalmi S, Vepsalainen S, Hiltunen M, Koivisto AM, Salminen A, Laakso M, et al. Genetic study between SIRT1, PPARD, PGC-1alpha genes and Alzheimer’s disease. [Research Support, Non-U.S. Gov’t]. J Neurol. 2008;255(5):668–73. doi:10.1007/s00415-008-0774-1.

    Article  CAS  PubMed  Google Scholar 

  72. Tritos NA, Mastaitis JW, Kokkotou EG, Puigserver P, Spiegelman BM, Maratos-Flier E. Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Brain Res. 2003;961(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  73. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408.

    Article  CAS  PubMed  Google Scholar 

  74. Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477–81.

    Article  CAS  PubMed  Google Scholar 

  75. Shoag J, Haq R, Zhang M, Liu L, Rowe GC, Jiang A, et al. PGC-1 coactivators regulate MITF and the tanning response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Cell. 2013;49(1):145–57. doi:10.1016/j.molcel.2012.10.027.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J, Puigserver P, et al. Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Dev Cell. 2003;5(1):73–83.

    Article  CAS  PubMed  Google Scholar 

  77. Oberkofler H, Hafner M, Felder T, Krempler F, Patsch W. Transcriptional co-activator peroxisome proliferator-activated receptor (PPAR)gamma co-activator-1beta is involved in the regulation of glucose-stimulated insulin secretion in INS-1E cells. [Research Support, Non-U.S. Gov’t]. J Mol Med. 2009;87(3):299–306. doi:10.1007/s00109-008-0425-0.

    Article  CAS  PubMed  Google Scholar 

  78. Arany Z, Wagner BK, Ma Y, Chinsomboon J, Laznik D, Spiegelman BM. Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1alpha and oxidative phosphorylation. [Research Support, N.I.H., Extramural]. Proc Natl Acad Sci U S A. 2008;105(12):4721–6. doi:10.1073/pnas.0800979105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Institutes of Health to G.C.R. (AR062128) and to Z.A. (HL094499).

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Arany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, G.C., Arany, Z. Genetic models of PGC-1 and glucose metabolism and homeostasis. Rev Endocr Metab Disord 15, 21–29 (2014). https://doi.org/10.1007/s11154-013-9273-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9273-5

Keywords

Navigation