Skip to main content

Advertisement

Log in

Extragonadal actions of chorionic gonadotropin

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The primary embryonic signal in primates is chorionic gonadotropin (CG, designated hCG in humans), that is classically associated with corpus luteum rescue and progesterone production. However, research over the past decade has revealed the presence of the hCG receptor in a variety of extragonadal tissues. Additionally, discoveries of the multiple variants of hCG, namely, native hCG, hyperglycosylated hCG (hyp-hCG) and the β- subunit of the hyperglycosylated hCG (hCG-free β) has established a role for extragonadal actions of hCG. For the initiation and maintenance of pregnancy, hCG mediates multiple placental, uterine and fetal functions. Some of these include development of syncytiotrophoblast cells, mitotic growth and differentiation of the endometrium, localized suppression of the maternal immune system, modulation of uterine morphology and gene expression and coordination of intricate signal transduction between the endometrium. Recurrent pregnancy loss, pre-eclampsia and endometriosis are associated with altered responses of hCG, all of which have a detrimental effect on pregnancy. A role for hyp-hCG in mediating the development of both trophoblastic and non-trophoblastic tumors has also been suggested. Other significant non-gonadal applications of hCG include predicting preeclampsia, determining the risk of Down’s syndrome and gestational trophoblastic disease, along with relaxing myometrial contractility and preventing recurrent miscarriages. Presence of hCG free-β in serum of cancer patients enables its usage as a diagnostic tumor marker. Thus, the extragonadal functions of hCG encompasses a wide spectrum of applications and is an open area for continued investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Muyan M, Boime I. Secretion of chorionic gonadotropin from human trophoblasts. Placenta. 1997;18(4):237–41.

    Article  PubMed  CAS  Google Scholar 

  2. Shi QJ, Lei ZM, Rao CV, Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology. 1993;132(3):1387–95.

    Article  PubMed  CAS  Google Scholar 

  3. Gallego MJ, Porayette P, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS. The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes. Stem Cell Res Ther. 2010;1(4):28.

    Article  PubMed  Google Scholar 

  4. Rao CV, Lei ZM. The past, present and future of nongonadal LH/hCG actions in reproductive biology and medicine. Mol Cell Endocrinol. 2007;269(1–2):2–8.

    Article  PubMed  CAS  Google Scholar 

  5. Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D, et al. Human chorionic gonadotropin expression in human trophoblasts from early placenta: comparative study between villous and extravillous trophoblastic cells. Placenta. 2007;28(2–3):175–84.

    Article  PubMed  CAS  Google Scholar 

  6. Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol. 2010;8:102.

    Article  PubMed  Google Scholar 

  7. Bahl OP, Carlsen RB, Bellisario R, Swaminathan N. Human chorionic gonadotropin: amino acid sequence of the alpha and beta subunits. Biochem Biophys Res Commun. 1972;48(2):416–22.

    Article  PubMed  CAS  Google Scholar 

  8. Morgan FJ, Birken S, Canfield RE. The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit. J Biol Chem. 1975;250(13):5247–58.

    PubMed  CAS  Google Scholar 

  9. Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine. 1997;7(1):15–32.

    Article  PubMed  CAS  Google Scholar 

  10. Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman UH. Site-specific glycan analysis of human chorionic gonadotropin beta-subunit from malignancies and pregnancy by liquid chromatography–electrospray mass spectrometry. Glycobiology. 2006;16(12):1207–18.

    Article  PubMed  CAS  Google Scholar 

  11. McFarland KC, Sprengel R, Phillips HS, Kohler M, Rosemblit N, Nikolics K, et al. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science (New York, NY). 1989;245(4917):494–9.

    Article  CAS  Google Scholar 

  12. Cameo P, Srisuparp S, Strakova Z, Fazleabas AT. Chorionic gonadotropin and uterine dialogue in the primate. Reprod Biol Endocrinol. 2004;2:50.

    Article  PubMed  Google Scholar 

  13. Fazleabas AT, Kim JJ, Strakova Z. Implantation: embryonic signals and the modulation of the uterine environment--a review. Placenta. 2004;25 Suppl A:S26-31.

    Google Scholar 

  14. Strakova Z, Mavrogianis P, Meng X, Hastings JM, Jackson KS, Cameo P, et al. In vivo infusion of interleukin-1beta and chorionic gonadotropin induces endometrial changes that mimic early pregnancy events in the baboon. Endocrinology. 2005;146(9):4097–104.

    Article  PubMed  CAS  Google Scholar 

  15. Cameo P, Szmidt M, Strakova Z, Mavrogianis P, Sharpe-Timms KL, Fazleabas AT. Decidualization regulates the expression of the endometrial chorionic gonadotropin receptor in the primate. Biol Reprod. 2006;75(5):681–9.

    Article  PubMed  CAS  Google Scholar 

  16. Reshef E, Lei ZM, Rao CV, Pridham DD, Chegini N, Luborsky JL. The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. J Clin Endocrinol Metab. 1990;70(2):421–30.

    Article  PubMed  CAS  Google Scholar 

  17. Licht P, von Wolff M, Berkholz A, Wildt L. Evidence for cycle-dependent expression of full-length human chorionic gonadotropin/luteinizing hormone receptor mRNA in human endometrium and decidua. Fertil Steril. 2003;79 Suppl 1:718–23.

    Article  PubMed  Google Scholar 

  18. Fazleabas AT, Donnelly KM, Srinivasan S, Fortman JD, Miller JB. Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity. Proc Natl Acad Sci U S A. 1999;96(5):2543–8.

    Article  PubMed  CAS  Google Scholar 

  19. Sherwin JR, Sharkey AM, Cameo P, Mavrogianis PM, Catalano RD, Edassery S, et al. Identification of Novel Genes Regulated by Chorionic Gonadotropin in Baboon Endometrium during the Window of Implantation. Endocrinology. 2007;148(2):618–26.

    Article  PubMed  CAS  Google Scholar 

  20. Brosens I, Derwig I, Brosens J, Fusi L, Benagiano G, Pijnenborg R. The enigmatic uterine junctional zone: the missing link between reproductive disorders and major obstetrical disorders? Hum Reprod. 2010;25(3):569–74.

    Article  PubMed  Google Scholar 

  21. Lovely LP, Fazleabas AT, Fritz MA, McAdams DG, Lessey BA. Prevention of endometrial apoptosis: randomized prospective comparison of human chorionic gonadotropin versus progesterone treatment in the luteal phase. J Clin Endocrinol Metab. 2005;90(4):2351–6.

    Article  PubMed  CAS  Google Scholar 

  22. Jasinska A, Strakova Z, Szmidt M, Fazleabas AT. Human chorionic gonadotropin and decidualization in vitro inhibits cytochalasin-D-induced apoptosis in cultured endometrial stromal fibroblasts. Endocrinology. 2006;147(9):4112–21.

    Article  PubMed  CAS  Google Scholar 

  23. Yanaihara A, Otsuka Y, Iwasaki S, Koide K, Aida T, Okai T. Comparison in gene expression of secretory human endometrium using laser microdissection. Reprod Biol Endocrinol. 2004;2:66.

    Article  PubMed  Google Scholar 

  24. Rodgers WH, Matrisian LM, Giudice LC, Dsupin B, Cannon P, Svitek C, et al. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest. 1994;94(3):946–53.

    Article  PubMed  CAS  Google Scholar 

  25. Prast J, Saleh L, Husslein H, Sonderegger S, Helmer H, Knofler M. Human chorionic gonadotropin stimulates trophoblast invasion through extracellularly regulated kinase and AKT signaling. Endocrinology. 2008;149(3):979–87.

    Article  PubMed  CAS  Google Scholar 

  26. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9.

    Article  PubMed  CAS  Google Scholar 

  27. Licht P, Russu V, Lehmeyer S, Wildt L. Molecular aspects of direct LH/hCG effects on human endometrium–lessons from intrauterine microdialysis in the human female in vivo. Reprod Biol. 2001;1(1):10–9.

    PubMed  CAS  Google Scholar 

  28. Yue ZP, Yang ZM, Wei P, Li SJ, Wang HB, Tan JH, et al. Leukemia inhibitory factor, leukemia inhibitory factor receptor, and glycoprotein 130 in rhesus monkey uterus during menstrual cycle and early pregnancy. Biol Reprod. 2000;63(2):508–12.

    Article  PubMed  CAS  Google Scholar 

  29. Evans J, Catalano RD, Brown P, Sherwin R, Critchley HO, Fazleabas AT, et al. Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor. Faseb J. 2009;23(7):2165–75.

    Article  PubMed  CAS  Google Scholar 

  30. Paiva P, Hannan NJ, Hincks C, Meehan KL, Pruysers E, Dimitriadis E, et al. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum Reprod. 2011;26(5):1153–62.

    Article  PubMed  CAS  Google Scholar 

  31. Tsampalas M, Gridelet V, Berndt S, Foidart JM, Geenen V, Perrier D'Hauterive S. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J Reprod immunol. 2010;85(1):93–8.

    Article  PubMed  CAS  Google Scholar 

  32. Karande AA, Mukhopadhyay D, Jayachandran R, Sundarraj S, Alok A. Mechanism of the immunomodulatory activity of glycodelin. Indian J Physiol Pharmacol. 2005;49(3):271–83.

    PubMed  CAS  Google Scholar 

  33. Seppala M, Taylor RN, Koistinen H, Koistinen R, Milgrom E. Glycodelin: a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocr Rev. 2002;23(4):401–30.

    Article  PubMed  CAS  Google Scholar 

  34. Sahu A, Lambris JD. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev. 2001;180:35–48.

    Article  PubMed  CAS  Google Scholar 

  35. Kajihara T, Uchino S, Suzuki M, Itakura A, Brosens JJ, Ishihara O. Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil Steril. 2011.

  36. Kane N, Kelly R, Saunders PT, Critchley HO. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150(6):2882–8.

    Article  PubMed  CAS  Google Scholar 

  37. Norris W, Nevers T, Sharma S, Kalkunte S. Review: hCG, preeclampsia and regulatory T cells. Placenta. 2011;32 Suppl 2:S182–5.

    Article  PubMed  Google Scholar 

  38. Sherwin JR, Hastings JM, Jackson KS, Mavrogianis PA, Sharkey AM, Fazleabas AT. The endometrial response to chorionic gonadotropin is blunted in a baboon model of endometriosis. Endocrinology. 2010;151(10):4982–93.

    Article  PubMed  CAS  Google Scholar 

  39. Klemmt PA, Carver JG, Kennedy SH, Koninckx PR, Mardon HJ. Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity. Fertil Steril. 2006;85(3):564–72.

    Article  PubMed  CAS  Google Scholar 

  40. Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258.

    Article  PubMed  Google Scholar 

  41. Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One. 2010;5(4):e10287.

    Article  PubMed  Google Scholar 

  42. Banerjee P, Sapru K, Strakova Z, Fazleabas AT. Chorionic gonadotropin regulates prostaglandin E synthase via a phosphatidylinositol 3-kinase-extracellular regulatory kinase pathway in a human endometrial epithelial cell line: implications for endometrial responses for embryo implantation. Endocrinology. 2009;150(9):4326–37.

    Article  PubMed  CAS  Google Scholar 

  43. Palaniappan M, Menon KM. Human chorionic gonadotropin stimulates theca-interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of AKT/mTORC1 signaling pathway. Mol Endocrinol. 2010;24(9):1782–93.

    Article  PubMed  CAS  Google Scholar 

  44. Manna PR, Jo Y, Stocco DM. Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J Endocrinol. 2007;193(1):53–63.

    Article  PubMed  CAS  Google Scholar 

  45. Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal. 2006;18(9):1351–9.

    Article  PubMed  CAS  Google Scholar 

  46. Srisuparp S, Strakova Z, Brudney A, Mukherjee S, Reierstad S, Hunzicker-Dunn M, et al. Signal transduction pathways activated by chorionic gonadotropin in the primate endometrial epithelial cells. Biol Reprod. 2003;68(2):457–64.

    Article  PubMed  CAS  Google Scholar 

  47. Seminara SB, Dipietro MJ, Ramaswamy S, Crowley Jr WF, Plant TM. Continuous human metastin 45–54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology. 2006;147(5):2122–6.

    Article  PubMed  CAS  Google Scholar 

  48. Sales KJ, Grant V, Catalano RD, Jabbour HN. Chorionic gonadotrophin regulates CXCR4 expression in human endometrium via E-series prostanoid receptor 2 signalling to PI3K-ERK1/2: implications for fetal-maternal crosstalk for embryo implantation. Mol Hum Reprod. 2011;17(1):22–32.

    Article  PubMed  CAS  Google Scholar 

  49. Fazleabas AT, Donnelly KM, Hild-Petito S, Hausermann HM, Verhage HG. Secretory proteins of the baboon (Papio anubis) endometrium: regulation during the menstrual cycle and early pregnancy. Hum Reprod Update. 1997;3(6):553–9.

    Article  PubMed  CAS  Google Scholar 

  50. Fazleabas AT, Donnelly KM, Mavrogianis PA, Verhage HG. Secretory and morphological changes in the baboon (Papio anubis) uterus and placenta during early pregnancy. Biol Reprod. 1993;49(4):695–704.

    Article  PubMed  CAS  Google Scholar 

  51. Kim JJ, Jaffe RC, Fazleabas AT. Insulin-like growth factor binding protein-1 expression in baboon endometrial stromal cells: regulation by filamentous actin and requirement for de novo protein synthesis. Endocrinology. 1999;140(2):997–1004.

    Article  PubMed  CAS  Google Scholar 

  52. Cole LA. The O-linked oligosaccharide structures are striking different on pregnancy and choriocarcinoma HCG. J Clin Endocrinol Metab. 1987;65(4):811–3.

    Article  PubMed  CAS  Google Scholar 

  53. Kovalevskaya G, Kakuma T, Schlatterer J, O’Connor JF. Hyperglycosylated HCG expression in pregnancy: cellular origin and clinical applications. Mol Cell Endocrinol. 2007;260–262:237–43.

    Article  PubMed  Google Scholar 

  54. Guibourdenche J, Handschuh K, Tsatsaris V, Gerbaud P, Leguy MC, Muller F, et al. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab. 2010;95(10):E240–4.

    Article  PubMed  CAS  Google Scholar 

  55. Cole LA, Dai D, Butler SA, Leslie KK, Kohorn EI. Gestational trophoblastic diseases: 1. Pathophysiology of hyperglycosylated hCG. Gynecol Oncol. 2006;102(2):145–50.

    Article  PubMed  CAS  Google Scholar 

  56. Hamada AL, Nakabayashi K, Sato A, Kiyoshi K, Takamatsu Y, Laoag-Fernandez JB, et al. Transfection of antisense chorionic gonadotropin beta gene into choriocarcinoma cells suppresses the cell proliferation and induces apoptosis. J Clin Endocrinol Metab. 2005;90(8):4873–9.

    Article  PubMed  CAS  Google Scholar 

  57. Tarrade A, Lai Kuen R, Malassine A, Tricottet V, Blain P, Vidaud M, et al. Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta. Laboratory investigation. J Tech Methods Pathol. 2001;81(9):1199–211.

    CAS  Google Scholar 

  58. Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol. 2005;3:56.

    Article  PubMed  Google Scholar 

  59. Vuorela P, Hatva E, Lymboussaki A, Kaipainen A, Joukov V, Persico MG, et al. Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod. 1997;56(2):489–94.

    Article  PubMed  CAS  Google Scholar 

  60. Shifren JL, Tseng JF, Zaloudek CJ, Ryan IP, Meng YG, Ferrara N, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81(8):3112–8.

    Article  PubMed  CAS  Google Scholar 

  61. Cole LA, Khanlian SA, Kohorn EI. Evolution of the human brain, chorionic gonadotropin and hemochorial implantation of the placenta: insights into origins of pregnancy failures, preeclampsia and choriocarcinoma. J Reprod Med. 2008;53(8):549–57.

    PubMed  CAS  Google Scholar 

  62. Acevedo HF, Tong JY, Hartsock RJ. Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer. 1995;76(8):1467–75.

    Article  PubMed  CAS  Google Scholar 

  63. Acevedo HF, Hartsock RJ. Metastatic phenotype correlates with high expression of membrane-associated complete beta-human chorionic gonadotropin in vivo. Cancer. 1996;78(11):2388–99.

    Article  PubMed  CAS  Google Scholar 

  64. Acevedo HF, Hartsock RJ, Maroon JC. Detection of membrane-associated human chorionic gonadotropin and its subunits on human cultured cancer cells of the nervous system. Cancer Detect Prev. 1997;21(4):295–303.

    PubMed  CAS  Google Scholar 

  65. Li D, Wen X, Ghali L, Al-Shalabi FM, Docherty SM, Purkis P, et al. hCG beta expression by cervical squamous carcinoma–in vivo histological association with tumour invasion and apoptosis. Histopathology. 2008;53(2):147–55.

    Article  PubMed  CAS  Google Scholar 

  66. Iles RK, Lee CL, Oliver RT, Chard T. Composition of intact hormone and free subunits in the human chorionic gonadotrophin-like material found in serum and urine of patients with carcinoma of the bladder. Clin Endocrinol (Oxf). 1990;33(3):355–64.

    Article  CAS  Google Scholar 

  67. Iles RK, Purkis PE, Whitehead PC, Oliver RT, Leigh I, Chard T. Expression of beta human chorionic gonadotrophin by non-trophoblastic non-endocrine ‘normal’ and malignant epithelial cells. Br J Cancer. 1990;61(5):663–6.

    Article  PubMed  CAS  Google Scholar 

  68. Butler SA, Ikram MS, Mathieu S, Iles RK. The increase in bladder carcinoma cell population induced by the free beta subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br J Cancer. 2000;82(9):1553–6.

    Article  PubMed  CAS  Google Scholar 

  69. Cosgrove DE, Campain JA, Cox GS. Chorionic gonadotropin synthesis by human tumor cell lines: examination of subunit accumulation, steady-state levels of mRNA, and gene structure. Biochim Biophys Acta. 1989;1007(1):44–54.

    PubMed  CAS  Google Scholar 

  70. Iles RK. Ectopic hCGbeta expression by epithelial cancer: malignant behaviour, metastasis and inhibition of tumor cell apoptosis. Mol Cell Endocrinol. 2007;260–262:264–70.

    Article  PubMed  Google Scholar 

  71. Cole LA, Khanlian SA, Muller CY, Giddings A, Kohorn E, Berkowitz R. Gestational trophoblastic diseases: 3. Human chorionic gonadotropin-free beta-subunit, a reliable marker of placental site trophoblastic tumors. Gynecol Oncol. 2006;102(2):160–4.

    Article  PubMed  CAS  Google Scholar 

  72. Cole LA, Tanaka A, Kim GS, Park SY, Koh MW, Schwartz PE, et al. Beta-core fragment (beta-core/UGF/UGP), a tumor marker: a 7-year report. Gynecol Oncol. 1996;60(2):264–70.

    Article  PubMed  CAS  Google Scholar 

  73. Moutzouris G, Yannopoulos D, Barbatis C, Zaharof A, Theodorou C. Is beta-human chorionic gonadotrophin production by transitional cell carcinoma of the bladder a marker of aggressive disease and resistance to radiotherapy? Br J Urol. 1993;72(6):907–9.

    Article  PubMed  CAS  Google Scholar 

  74. Delves PJ, Iles RK, Roitt IM, Lund T. Designing a new generation of anti-hCG vaccines for cancer therapy. Mol Cell Endocrinol. 2007;260–262:276–81.

    Article  PubMed  Google Scholar 

  75. Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res. 2002;8(7):2044–51.

    PubMed  CAS  Google Scholar 

  76. Arends J. Radioimmunoassay of urinary human chorionic gonadotrophin. Acta Endocrinol (Copenh). 1971;66(4):611–26.

    CAS  Google Scholar 

  77. Cole LA. Human chorionic gonadotropin and associated molecules. Expert Rev Mol Diagn. 2009;9(1):51–73.

    Article  PubMed  CAS  Google Scholar 

  78. Cole LA, Khanlian SA, Sutton JM, Davies S, Stephens ND. Hyperglycosylated hCG (invasive trophoblast antigen, ITA) a key antigen for early pregnancy detection. Clin Biochem. 2003;36(8):647–55.

    Article  PubMed  CAS  Google Scholar 

  79. Butler SA, Khanlian SA, Cole LA. Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin Chem. 2001;47(12):2131–6.

    PubMed  CAS  Google Scholar 

  80. Bjercke S, Tanbo T, Dale PO, Morkrid L, Abyholm T. Human chorionic gonadotrophin concentrations in early pregnancy after in-vitro fertilization. Hum Reprod. 1999;14(6):1642–6.

    Article  PubMed  CAS  Google Scholar 

  81. Sasaki Y, Ladner DG, Cole LA. Hyperglycosylated human chorionic gonadotropin and the source of pregnancy failures. Fertil Steril. 2008;89(6):1781–6.

    Article  PubMed  CAS  Google Scholar 

  82. Kovalevskaya G, Birken S, Kakuma T, Ozaki N, Sauer M, Lindheim S, et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope. J Endocrinol. 2002;172(3):497–506.

    Article  PubMed  CAS  Google Scholar 

  83. Birken S, Kovalevskaya G, O’Connor J. Immunochemical measurement of early pregnancy isoforms of HCG: potential applications to fertility research, prenatal diagnosis, and cancer. Arch Med Res. 2001;32(6):635–43.

    Article  PubMed  CAS  Google Scholar 

  84. O’Connor JF, Ellish N, Kakuma T, Schlatterer J, Kovalevskaya G. Differential urinary gonadotrophin profiles in early pregnancy and early pregnancy loss. Prenat Diagn. 1998;18(12):1232–40.

    Article  PubMed  Google Scholar 

  85. Carp HJ. Recurrent miscarriage and hCG supplementation: a review and metaanalysis. Gynecol Endocrinol. 2010;26(10):712–6.

    Article  PubMed  CAS  Google Scholar 

  86. Ticconi C, Piccione E, Belmonte A, Rao ChV. HCG–A new kid on the block in prematurity prevention. J Matern Fetal Neonatal Med. 2006;19(11):687–92.

    Article  PubMed  CAS  Google Scholar 

  87. Kurtzman JT, Spinnato JA, Goldsmith LJ, Zimmerman MJ, Klem M, Lei ZM, et al. Human chorionic gonadotropin exhibits potent inhibition of preterm delivery in a small animal model. Am J Obstet Gynecol. 1999;181(4):853–7.

    Article  PubMed  CAS  Google Scholar 

  88. Angioni S, Spedicato M, Rizzo A, Cosola C, Mutinati M, Minoia G et al. In vitro activity of human chorionic gonadotropin (hCG) on myometrium contractility. Gynecol Endocrinol. 2011.

  89. Scott JR, Pattison N. Human chorionic gonadotrophin for recurrent miscarriage. Cochrane Database Syst Rev. 2000(2):CD000101.

  90. Qureshi NS. Treatment options for threatened miscarriage. Maturitas. 2009;65 Suppl 1:S35–41.

    Article  PubMed  CAS  Google Scholar 

  91. Devaseelan P, Fogarty PP, Regan L. Human chorionic gonadotrophin for threatened miscarriage. Cochrane Database Syst Rev. 2010(5):CD007422.

  92. Muller CY, Cole LA. The quagmire of hCG and hCG testing in gynecologic oncology. Gynecol Oncol. 2009;112(3):663–72.

    Article  PubMed  CAS  Google Scholar 

  93. Cole LA. hCG and hyperglycosylated hCG in the establishment and evolution of hemochorial placentation. J Reprod Immunol. 2009;82(2):112–8.

    Article  PubMed  CAS  Google Scholar 

  94. Cole LA, Butler SA, Khanlian SA, Giddings A, Muller CY, Seckl MJ, et al. Gestational trophoblastic diseases: 2. Hyperglycosylated hCG as a reliable marker of active neoplasia. Gynecol Oncol. 2006;102(2):151–9.

    Article  PubMed  CAS  Google Scholar 

  95. Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010;376(9742):717–29.

    Article  PubMed  Google Scholar 

  96. Cole LA, Shahabi S, Oz UA, Bahado-Singh RO, Mahoney MJ. Hyperglycosylated human chorionic gonadotropin (invasive trophoblast antigen) immunoassay: a new basis for gestational Down syndrome screening. Clin Chem. 1999;45(12):2109–19.

    PubMed  CAS  Google Scholar 

  97. Bogart MH, Pandian MR, Jones OW. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn. 1987;7(9):623–30.

    Article  PubMed  CAS  Google Scholar 

  98. Jauniaux E, Bao S, Eblen A, Li X, Lei ZM, Meuris S, et al. HCG concentration and receptor gene expression in placental tissue from trisomy 18 and 21. Mol Hum Reprod. 2000;6(1):5–10.

    Article  PubMed  CAS  Google Scholar 

  99. Reynolds T. The triple test as a screening technique for Down syndrome: reliability and relevance. Int J Womens Health. 2010;2:83–8.

    Article  PubMed  CAS  Google Scholar 

  100. Frendo JL, Vidaud M, Guibourdenche J, Luton D, Muller F, Bellet D, et al. Defect of villous cytotrophoblast differentiation into syncytiotrophoblast in Down’s syndrome. J Clin Endocrinol Metab. 2000;85(10):3700–7.

    Article  PubMed  CAS  Google Scholar 

  101. Massin N, Frendo JL, Guibourdenche J, Luton D, Giovangrandi Y, Muller F et al. Defect of syncytiotrophoblast formation and human chorionic gonadotropin expression in Down’s syndrome. Placenta. 2001;22 Suppl A:S93-7.

    Google Scholar 

  102. Palomaki GE, Knight GJ, Lambert-Messerlian G, Canick JA, Haddow JE. Four years’ experience with an interlaboratory comparison program involving first-trimester markers of Down syndrome. Arch Pathol Lab Med. 2010;134(11):1685–91.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgerally T. Fazleabas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, P., Fazleabas, A.T. Extragonadal actions of chorionic gonadotropin. Rev Endocr Metab Disord 12, 323–332 (2011). https://doi.org/10.1007/s11154-011-9193-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-011-9193-1

Keywords

Navigation