Skip to main content

Advertisement

Log in

Management of dyslipidemia in people with type 2 diabetes mellitus

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Cardiovascular disease is a major complication of type 2 diabetes mellitus, and this is partly due to associated abnormalities of plasma lipid and lipoprotein metabolism. Although glycemic control improves plasma lipoprotein abnormalities and may have an independent benefit on cardiovascular risk reduction, the magnitude of this benefit is less than cholesterol lowering therapy. Current treatment guidelines for the management of dyslipidemia in people with type 2 diabetes are based on the results of cardiovascular outcome clinical trials. Primary emphasis of treatment should be on lowering LDL-C to < 100 mg/dl with statins. If cardiovascular disease is present, then high dose statins should be used, and an optional LDL-C goal < 70 is recommended. If triglycerides are > 200 mg/dl, then a secondary goal is to lower non-HDL-C < 130 mg/dl (< 100 mg/dl if cardiovascular disease is present) is recommended. Low HDL-C levels are common in type 2 diabetes but are not currently recommended as a target for treatment because of the lack of definitive cardiovascular outcome studies supporting this goal, and because of the difficulty in raising HDL-C. The additional benefit of combination therapy with fibrates, ezetimibe or niacin added to a statin on cardiovascular risk is uncertain pending the results of on-going cardiovascular outcome studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    Article  CAS  PubMed  Google Scholar 

  2. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  CAS  PubMed  Google Scholar 

  3. Howard BV, Best LG, Galloway JM, et al. Coronary heart disease risk equivalence in diabetes depends on concomitant risk factors. Diabetes Care. 2006;29:391–7.

    Article  PubMed  Google Scholar 

  4. Schramm TK, Gislason GH, Kober L, et al. Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation. 2008;117:1945–54.

    Article  CAS  PubMed  Google Scholar 

  5. Sprafka JM, Burke GL, Folsom AR, et al. Trends in prevalence of diabetes mellitus in patients with myocardial infarction and effect of diabetes on survival. The Minnesota Heart Survey. Diabetes Care. 1991;14:537–43.

    Article  CAS  PubMed  Google Scholar 

  6. Miettinen H, Lehto S, Salomaa V, et al. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care. 1998;21:69–75.

    Article  CAS  PubMed  Google Scholar 

  7. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.

    Article  PubMed  Google Scholar 

  8. Goldberg IJ. Clinical review 124: diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86:965–71.

    Article  CAS  PubMed  Google Scholar 

  9. Garvey WT, Kwon S, Zheng D, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52:453–62.

    Article  CAS  PubMed  Google Scholar 

  10. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004;27:1496–504.

    Article  CAS  PubMed  Google Scholar 

  11. Boden G, Laakso M. Lipids and glucose in type 2 diabetes: what is the cause and effect? Diabetes Care. 2004;27:2253–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36:232–40.

    Article  CAS  PubMed  Google Scholar 

  13. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  14. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article  Google Scholar 

  15. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  16. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.

    Article  CAS  PubMed  Google Scholar 

  17. Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316:823–8.

    CAS  PubMed  Google Scholar 

  18. Ginsberg HN. REVIEW: efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia. J Clin Endocrinol Metab. 2006;91:383–92.

    Article  CAS  PubMed  Google Scholar 

  19. Myerson M, Ngai C, Jones J, et al. Treatment with high-dose simvastatin reduces secretion of apolipoprotein B-lipoproteins in patients with diabetic dyslipidemia. J Lipid Res. 2005;46:2735–44.

    Article  CAS  PubMed  Google Scholar 

  20. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90, 056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  PubMed  Google Scholar 

  21. Pyorala K, Pedersen TR, Kjekshus J, et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care. 1997;20:614–20.

    Article  CAS  PubMed  Google Scholar 

  22. Haffner SM, Alexander CM, Cook TJ, et al. Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med. 1999;159:2661–7.

    Article  CAS  PubMed  Google Scholar 

  23. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20, 536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  24. Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361:2005–16.

    Article  PubMed  Google Scholar 

  25. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–96.

    Article  CAS  PubMed  Google Scholar 

  26. Knopp RH, d’Emden M, Smilde JG, Pocock SJ. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPEN). Diabetes Care. 2006;29:1478–85.

    Article  CAS  PubMed  Google Scholar 

  27. Shepherd J, Barter P, Carmena R, et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care. 2006;29:1220–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18, 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.

    Article  CAS  PubMed  Google Scholar 

  29. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest. 2006;116:571–80.

    Article  CAS  PubMed  Google Scholar 

  30. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med. 1987;317:1237–45.

    CAS  PubMed  Google Scholar 

  31. Koskinen P, Manttari M, Manninen V, et al. Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diabetes Care. 1992;15:820–5.

    Article  CAS  PubMed  Google Scholar 

  32. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341:410–8.

    Article  CAS  PubMed  Google Scholar 

  33. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001;285:1585–91.

    Article  CAS  PubMed  Google Scholar 

  34. Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med. 2002;162:2597–604.

    Article  CAS  PubMed  Google Scholar 

  35. Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care. 2003;26:1513–7.

    Article  CAS  PubMed  Google Scholar 

  36. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.

    Article  CAS  PubMed  Google Scholar 

  37. Grundy SM, Vega GL, Yuan Z, et al. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). Am J Cardiol. 2005;95:462–8.

    Article  CAS  PubMed  Google Scholar 

  38. Abourbih S, Filion KB, Joseph L, et al. Effect of fibrates on lipid profiles and cardiovascular outcomes: a systematic review. Am J Med. 2009;122:962 e1–8.

    Article  CAS  Google Scholar 

  39. Ginsberg HN, Bonds DE, Lovato LC, et al. Evolution of the lipid trial protocol of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol. 2007;99:56i–67.

    Article  PubMed  Google Scholar 

  40. Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8:1245–55.

    Article  CAS  PubMed  Google Scholar 

  41. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345:1583–92.

    Article  CAS  PubMed  Google Scholar 

  42. Taylor AJ, Villines TC, Stanek EJ, et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med 2009.

  43. Garg A, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA. 1990;264:723–6.

    Article  CAS  PubMed  Google Scholar 

  44. Grundy SM, Vega GL, McGovern ME, et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch Intern Med. 2002;162:1568–76.

    Article  CAS  PubMed  Google Scholar 

  45. Goldberg RB, Jacobson TA. Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clin Proc. 2008;83:470–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kahn SE, Beard JC, Schwartz MW, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistance. Diabetes. 1989;38:562–8.

    Article  CAS  PubMed  Google Scholar 

  47. Bays HE, Moore PB, Drehobl MA, et al. Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther. 2001;23:1209–30.

    Article  CAS  PubMed  Google Scholar 

  48. Cannon CP, Giugliano RP, Blazing MA, et al. Rationale and design of IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial): comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes. Am Heart J. 2008;156:826–32.

    Article  CAS  PubMed  Google Scholar 

  49. Howard BV, Roman MJ, Devereux RB, et al. Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes: the SANDS randomized trial. JAMA. 2008;299:1678–89.

    Article  CAS  PubMed  Google Scholar 

  50. Fleg JL, Mete M, Howard BV, et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol. 2008;52:2198–205.

    Article  CAS  PubMed  Google Scholar 

  51. Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction of incidence of coronary heart disease. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA. 1984;251:351–74.

    Article  Google Scholar 

  52. Crouse JR. Hypertriglyceridemia: a contraindication to the use of bile acid binding resins. Am J Med. 1987;83:243–8.

    Article  PubMed  Google Scholar 

  53. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121:416–22.

    CAS  PubMed  Google Scholar 

  54. Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther. 2007;29:74–83.

    Article  CAS  PubMed  Google Scholar 

  55. National Cholesterol Education Program. Executive Summary of The third report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  56. Liu J, Sempos C, Donahue RP, et al. Joint distribution of non-HDL and LDL cholesterol and coronary heart disease risk prediction among individuals with and without diabetes. Diabetes Care. 2005;28:1916–21.

    Article  PubMed  Google Scholar 

  57. Smith Jr SC, Allen J, Blair SN, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006;113:2363–72.

    Article  PubMed  Google Scholar 

  58. Brunzell JD, Davidson M, Furberg CD, et al. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care. 2008;31:811–22.

    Article  CAS  PubMed  Google Scholar 

  59. Kastelein JJ, van der Steeg WA, Holme I, et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation. 2008;117:3002–9.

    Article  CAS  PubMed  Google Scholar 

  60. Vasudevan MM, Ballantyne CM. Advances in lipid testing and management in patients with diabetes mellitus. Endocr Pract. 2009;15:641–52.

    Article  PubMed  Google Scholar 

  61. American Diabetes Association. Standards of medical care in diabetes—2009. Diabetes Care. 2009;32 Suppl 1:S13–61.

    Article  Google Scholar 

  62. American Diabetes Association. Dyslipidemia management in adults with diabetes. Diabetes Care. 2004;27 Suppl 1:S68–71.

    Google Scholar 

  63. American Diabetes Association. Summary of revisions for the 2005 clinical practice recommendations. Diabetes Care. 2005;28:S3.

    Article  Google Scholar 

  64. American Diabetes Association. Summary of revisions for the 2008 clinical practice recommendations. Diabetes Care. 2008;31:S3–4.

    Article  Google Scholar 

  65. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  PubMed  Google Scholar 

  66. Yu-Poth S, Zhao G, Etherton T, et al. Effects of the National Cholesterol Education Program’s Step I and Step II dietary intervention programs on cardiovascular disease risk factors: a meta-analysis. Am J Clin Nutr. 1999;69:632–46.

    CAS  PubMed  Google Scholar 

  67. Garg A, Bonanome A, Grundy SM, et al. Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1988;319:829–34.

    Article  CAS  PubMed  Google Scholar 

  68. Turley ML, Skeaff CM, Mann JI, Cox B. The effect of a low-fat, high-carbohydrate diet on serum high density lipoprotein cholesterol and triglyceride. Eur J Clin Nutr. 1998;52:728–32.

    Article  CAS  PubMed  Google Scholar 

  69. Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr. 1998;67:577S–82.

    CAS  PubMed  Google Scholar 

  70. Kennedy L, Walshe K, Hadden DR, et al. The effect of intensive dietary therapy on serum high-density lipoprotein cholesterol in patients with type II (noninsulin-dependent) diabetes mellitus: a prospective study. Diabetologia. 1982;23:24–7.

    CAS  PubMed  Google Scholar 

  71. Pi-Sunyer X, Blackburn G, Brancati FL, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30:1374–83.

    Article  PubMed  Google Scholar 

  72. Emanuele N, Azad N, Abraira C, et al. Effect of intensive glycemic control on fibrinogen, lipids, and lipoproteins: veterans affairs cooperative study in type II diabetes mellitus. Arch Intern Med. 1998;158:2485–90.

    Article  CAS  PubMed  Google Scholar 

  73. Kelly TN, Bazzano LA, Fonseca VA, et al. Systematic review: glucose control and cardiovascular disease in type 2 diabetes. Ann Intern Med. 2009;151:394–403.

    PubMed  Google Scholar 

  74. Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32:187–92.

    Article  PubMed  Google Scholar 

  75. Greenfield MS, Doberne L, Rosenthal M, et al. Lipid metabolism in noninsulin dependent diabetes mellitus. Effect of glipizide therapy. Arch Intern Med. 1982;142:1498–500.

    Article  CAS  PubMed  Google Scholar 

  76. Rains SGH, Wilson GA, Richmand W, Elkeles RS. The reduction of low density lipoprotein cholesterol by metformin is maintained with long term therapy. J R Soc Med. 1989;82:92–4.

    Google Scholar 

  77. Freed MI, Ratner R, Marcovina SM, et al. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol. 2002;90:947–52.

    Article  CAS  PubMed  Google Scholar 

  78. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–54.

    Article  CAS  PubMed  Google Scholar 

  79. Abrams J, Ginsberg H, Grundy S. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes. 1982;31:903–10.

    Article  CAS  PubMed  Google Scholar 

  80. Nathan DM, Roussell A, Godine JE. Glyburide or insulin for metabolic control in non-insulin-dependent diabetes mellitus. A randomized, double-blind study. Ann Intern Med. 1988;108:334–40.

    CAS  PubMed  Google Scholar 

  81. Taskinen M-R, Kuusi T, Helve E, et al. Insulin therapy induces antiatherogenic changes of serum lipoprotein in noninsulin-dependent diabetes. Atherosclerosis. 1988;8:168–77.

    CAS  Google Scholar 

  82. Cui Y, Blumenthal RS, Flaws JA, et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.

    Article  CAS  PubMed  Google Scholar 

  83. Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol. 2006;97:27C–31.

    Article  CAS  PubMed  Google Scholar 

  84. Scott R, O’Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9, 795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32:493–8.

    Article  CAS  PubMed  Google Scholar 

  85. Davidson MH, Stein EA, Bays HE, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–67.

    Article  CAS  PubMed  Google Scholar 

  86. Betteridge DJ. CHICAGO, PERISCOPE and PROactive: CV risk modification in diabetes with pioglitazone. Fundam Clin Pharmacol. 2009;23:675–9.

    Article  CAS  PubMed  Google Scholar 

  87. Schaefer EJ, Asztalos BF. Cholesteryl ester transfer protein inhibition, high-density lipoprotein metabolism and heart disease risk reduction. Curr Opin Lipidol. 2006;17:394–8.

    Article  CAS  PubMed  Google Scholar 

  88. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks Scott Grundy MD, PhD for his helpful comments in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrick L. Dunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, F.L. Management of dyslipidemia in people with type 2 diabetes mellitus. Rev Endocr Metab Disord 11, 41–51 (2010). https://doi.org/10.1007/s11154-010-9132-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-010-9132-6

Keywords

Navigation