Skip to main content

Advertisement

Log in

Growth factor signalling in endocrine and anti-growth factor resistant breast cancer

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Growth factors provide powerful mitogenic and survival signals to breast cancer cells and it is therefore not surprising that they are able to subvert inhibitory responses to anti-hormonal drugs. In this review we discuss several mechanisms by which this may be achieved and expand our observations to encompass recently emerging anti-growth factor treatments. The information presented is underpinned by inhibitor studies that show the targeting of such mechanisms in advance of anti-hormone or anti-growth factor resistance development is able to substantially delay this event, thus pointing the way forward to intelligent combination therapies relevant to the future management of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholson RI, Johnston SR. Endocrine therapy—current benefits and limitations. Breast Cancer Res Treat 2005;93:3–10.

    Google Scholar 

  2. Endocrine Therapy of Breast Cancer. In: Robertson JFR, Nicholson RI, Hayes editors. Martin Dunitz, London, 2002.

  3. Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA, et al. Modulation of epidermal growth factor receptor in endocrine-resistant, estrogen-receptor-positive breast cancer. Ann N Y Acad Sci 2002;963:104–15.

    Article  PubMed  CAS  Google Scholar 

  4. Nicholson RI, Gee JM. Oestrogen and growth factor cross-talk and endocrine insensitivity and acquired resistance in breast cancer. Br J Cancer 2000;82:501–13.

    PubMed  CAS  Google Scholar 

  5. Surmacz E. Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neopl 2000;5:95–105.

    CAS  Google Scholar 

  6. Newman SP, Bates NP, Vernimmen D, Parker MG, Hurst HC. Cofactor competition between the ligand-bound oestrogen receptor and an intron 1 enhancer leads to oestrogen repression of ERBB2 expression in breast cancer. Oncogene 2000;19:490–7.

    PubMed  CAS  Google Scholar 

  7. Wilson MA, Chrysogelos SA. Identification and characterization of a negative regulatory element within the epidermal growth factor receptor gene first intron in hormone-dependent breast cancer cells. J Cell Biochem 2002;85:601–14.

    PubMed  CAS  Google Scholar 

  8. Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA, et al. Modulation of epidermal growth factor receptor in endocrine-resistant, oestrogen receptor-positive breast cancer. Endocr Relat Cancer 2001;8:175–82.

    PubMed  CAS  Google Scholar 

  9. Gee JM, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, et al. The anti-epidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves anti-hormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 2003;144:5105–17.

    PubMed  CAS  Google Scholar 

  10. McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, et al. Enhanced epidermal growth factor receptor signalling in MCF-7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology 2001;142:2776–88.

    PubMed  CAS  Google Scholar 

  11. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 2003;144:1032–44.

    PubMed  CAS  Google Scholar 

  12. Vickers PJ, Dickson RB, Shoemaker R, Cowan KH. A multidrug-resistant MCF-7 human breast cancer cell line which exhibits cross-resistance to antiestrogens and hormone-independent tumor growth in vivo. Mol Endocrinol 1988;2:886–92.

    Article  PubMed  CAS  Google Scholar 

  13. Long B, McKibben BM, Lynch M, van den Berg HW. Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75-1 human breast cancer cell line. Br J Cancer 1992;65:865–9.

    PubMed  CAS  Google Scholar 

  14. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 1993;24:85–95.

    CAS  Google Scholar 

  15. van Agthoven T, van Agthoven TL, Portengen H, Foekens JA, Dorssers LC. Ectopic expression of epidermal growth factor receptors induces hormone independence in ZR-75-1 human breast cancer cells. Cancer Res 1992;52:5082–8.

    PubMed  Google Scholar 

  16. Miller DL, el-Ashry D, Cheville AL, Liu Y, McLeskey SW, Kern FG. Emergence of MCF-7 cells overexpressing a transfected epidermal growth factor receptor (EGFR) under estrogen-depleted conditions: evidence for a role of EGFR in breast cancer growth and progression. Cell Growth Differ 1994;5:1263–74.

    PubMed  CAS  Google Scholar 

  17. Liu Y, el-Ashry D, Chen D, Ding IY, Kern FG. MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res Treat 1995;34:97–117.

    PubMed  CAS  Google Scholar 

  18. Kurokawa H, Lenferink A E, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 2000;60:5887–94.

    PubMed  CAS  Google Scholar 

  19. Martin LA, Farmer I, Johnston SR, Ali S, Marshall CJ, Dowsett M. Enhanced estrogen receptor (ER) alpha, ERBB2 and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term oestrogen deprivation. J Biol Chem 2003; 278:30458–68.

    PubMed  CAS  Google Scholar 

  20. Jordan NJ, Gee JM, Barrow D, Wakeling AE, Nicholson RI. Increased constitutive activity of PKB/AKT in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 2004; 87:167–80.

    PubMed  CAS  Google Scholar 

  21. Coutts AS, Murphy LC. Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res 1998;58:4071–4.

    PubMed  CAS  Google Scholar 

  22. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 2001;276:9817–24.

    PubMed  CAS  Google Scholar 

  23. Donovan JC, Milic A, Slingerland JM. Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 2001;276:40888–95.

    PubMed  CAS  Google Scholar 

  24. Kurokawa H, Arteaga CL. ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res 2003;9:511S–5.

    PubMed  CAS  Google Scholar 

  25. Frogne T, Jepsen JS, Larsen SS, Fog CK, Brockdorff BL, Lykkesfeldt AE. Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 2005;12:599–614.

    PubMed  CAS  Google Scholar 

  26. Jeng MH, Yue W, Eischeid A, Wang JP, Santen RJ. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res Treat 2000;62:167–75.

    PubMed  CAS  Google Scholar 

  27. van Agthoven T, van Agthoven TL, Dekker A, Foekens JA, Dorssers LC. Induction of estrogen independence of ZR-75-1 human breast cancer cells by epigenetic alterations. Mol Endocrinol 1994;8:1474–83.

    PubMed  Google Scholar 

  28. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 2004;96:926–35.

    Article  PubMed  CAS  Google Scholar 

  29. Witters LM, Kumar R, Chinchilli VM, Lipton A. Enhanced anti-proliferative activity of the combination of tamoxifen plus HER-2-neu antibody. Breast Cancer Res Treat 1997;42:1–5.

    PubMed  CAS  Google Scholar 

  30. Witters L, Engle L, Lipton A. Restoration of estrogen responsiveness by blocking the HER-2/neu pathway. Oncol Rep 2002;9:1163–6.

    PubMed  CAS  Google Scholar 

  31. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 2000;60:5887–94.

    PubMed  CAS  Google Scholar 

  32. Britton DJ, Hutcheson IR, Knowlden JM, Barrow D, Giles M, McClelland RA, et al. Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 2006;96:131–46.

    PubMed  CAS  Google Scholar 

  33. Gee JM, Robertson JF, Ellis IO, Nicholson RI. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 2001;95:247–54.

    PubMed  CAS  Google Scholar 

  34. Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, et al. Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 2005;12:99–111.

    Google Scholar 

  35. Agrawal A, Gutteridge E, Gee JM, Nicholson RI, Robertson JF. Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr Relat Cancer 2005;12:135–44.

    Google Scholar 

  36. Nicholson RI, Jones HE, Gee JMW. EGFR inhibitors in breast cancer. Signal 2004;5:9–13.

    Google Scholar 

  37. Johnston SR. Clinical trials of intracellular signal transductions inhibitors for breast cancer–a strategy to overcome endocrine resistance. Endocr Relat Cancer 2005;12:S145–57.

    PubMed  CAS  Google Scholar 

  38. Bunone G, Briand P-A, Miksicek RJ, Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996;15:2174–83.

    PubMed  CAS  Google Scholar 

  39. Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA. pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol 1998;18:1978–84.

    PubMed  CAS  Google Scholar 

  40. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995;270:1491–4.

    PubMed  CAS  Google Scholar 

  41. Lannigan DA. Estrogen receptor phosphorylation. Steroids 2003;68:1–9.

    PubMed  CAS  Google Scholar 

  42. Encarnacion CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SAW, Osborne CK. Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 1993;26:237–46.

    PubMed  CAS  Google Scholar 

  43. Brunner N, Frandesen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, et al. MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res 1993;53:3229–32.

    PubMed  CAS  Google Scholar 

  44. Lykkesfeldt AE, Mogens MW, Briand P. Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAM R-1. Cancer Res 1994;54:1587–95.

    PubMed  CAS  Google Scholar 

  45. Robertson JF. Oestrogen receptor: a stable phenotype in breast cancer. Br J Cancer 1996;73:5–12.

    PubMed  CAS  Google Scholar 

  46. Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE, et al. Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat 2003;81:81–93.

    PubMed  CAS  Google Scholar 

  47. Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M. Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. J Steroid Biochem Mol Biol 2002;81:333–41.

    PubMed  CAS  Google Scholar 

  48. Vendrell JA, Bieche I, Desmetz C, Badia E, Tozlu S, Nguyen C, et al. Molecular changes associated with the agonist activity of hydroxy-tamoxifen and the hyper-response to estradiol in hydroxy-tamoxifen-resistant breast cancer cell lines. Endocr Relat Cancer 2005;12:75–92.

    PubMed  CAS  Google Scholar 

  49. Hu XF, Veroni M, De Luise M, Wakeling A, Sutherland R, Watts CK, et al. Circumvention of tamoxifen resistance by the pure anti-estrogen ICI 182,780. Int J Cancer 1993;55:873–6.

    PubMed  CAS  Google Scholar 

  50. Coopman P, Garcia M, Brunner N, Derocq D, Clarke R, Rochefort H. Anti-proliferative and anti-estrogenic effects of ICI 164,384 and ICI 182,780 in 4-OH-tamoxifen-resistant human breast-cancer cells. Int J Cancer 1994;56:295–300.

    PubMed  CAS  Google Scholar 

  51. Howell A, Robertson J. Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet 1995;345:989–90.

    PubMed  CAS  Google Scholar 

  52. Howell A, DeFriend DJ, Robertson JF, Blamey RW, Anderson L, Anderson E, et al. Pharmacokinetics, pharmacological and anti-tumor effects of the specific anti-estrogen ICI 182,780 in women with advanced breast cancer. Br J Cancer 1996;74:300–8.

    PubMed  CAS  Google Scholar 

  53. Staka CM, Nicholson RI, Gee JM. Acquired resistance to oestrogen deprivation: role for growth factor signalling kinases/oestrogen receptor cross-talk revealed in new MCF-7X model. Endocr Relat Cancer 2005;12:S85–97.

    PubMed  CAS  Google Scholar 

  54. Font de Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 2000;20:5041–7.

    PubMed  CAS  Google Scholar 

  55. Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ. Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J Biol Chem 2001;276:22177–82.

    PubMed  CAS  Google Scholar 

  56. Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase. Mol Cell Biol 2002;22:3549–61.

    PubMed  CAS  Google Scholar 

  57. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 2003;95:353–61.

    Article  PubMed  CAS  Google Scholar 

  58. Schiff R, Massarweh S, Shou J, Osborne CK. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 2003;9:447S–54.

    PubMed  CAS  Google Scholar 

  59. Sarwar N, Kim JS, Jiang J, Peston D, Sinnett HD, Madden P, et al. Phosphorylation of ERalpha at serine 118 in primary breast cancer and in tamoxifen-resistant tumours is indicative of a complex role for ERalpha phosphorylation in breast cancer progression. Endocr Relat Cancer 2006;13:851–61.

    PubMed  CAS  Google Scholar 

  60. Nemere I, Pietras RJ, Blackmore PF. Membrane receptors for steroid hormones: signal transduction and physiological significance. J Cell Biochem 2003;88:438–45.

    PubMed  CAS  Google Scholar 

  61. Santen RJ, Lobenhofer EK, Afshari CA, Bao Y, Song RX. Adaptation of estrogen-regulated genes in long-term estradiol deprived MCF-7 breast cancer cells. Breast Cancer Res Treat 2005;94:213–23.

    PubMed  CAS  Google Scholar 

  62. Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology 2005;146:4609–18.

    PubMed  CAS  Google Scholar 

  63. Parisot JP, Hu XF, DeLuise M, Zalcberg JR. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer 1999;79:693–700.

    PubMed  CAS  Google Scholar 

  64. Coppola D, Ferber A, Miura M, Sell C, D’Ambrosio C, Rubin R, et al. Functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol Cell Biol 1994;14:4588–95.

    PubMed  CAS  Google Scholar 

  65. Ahmad T, Farnie G, Bundred NJ, Anderson NG. The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem 2003;279:1713–9.

    PubMed  Google Scholar 

  66. Gilmore AP, Valentijn AJ, Wang P, Ranger AM, Bundred N, O’Hare MJ, et al. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem 2002;277:27643–50.

    PubMed  CAS  Google Scholar 

  67. Roudabush FL, Pierce KL, Maudsley S, Khan KD, Luttrell LM. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem 2000;275:22583–9.

    PubMed  CAS  Google Scholar 

  68. Hurbin A, Dubrez L, Coll JL, Favrot MC. Inhibition of apoptosis by amphiregulin via an insulin-like growth factor-1 receptor-dependent pathway in non-small cell lung cancer cell lines. J Biol Chem 2002;277:49127–33.

    PubMed  CAS  Google Scholar 

  69. Wang D, Patil S, Li W, Humphrey LE, Brattain MG, Howell GM. Activation of the TGFalpha autocrine loop is downstream of IGF-I receptor activation during mitogenesis in growth factor dependent human colon carcinoma cells. Oncogene 2002;21:2785–96.

    PubMed  CAS  Google Scholar 

  70. Vardy DA, Kari C, Lazarus GS, Jensen PJ, Zilberstein A, Plowman GD, et al. Induction of autocrine epidermal growth factor receptor ligands in human keratinocytes by insulin/insulin-like growth factor-1. J Cell Biol 1995;163:257–65.

    CAS  Google Scholar 

  71. Balana ME, Labriola L, Salatino M, Movsichoff F, Peters G, Charreau EH, et al. Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene 2001;20:34–47.

    PubMed  CAS  Google Scholar 

  72. Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 1999;274:8335–43.

    PubMed  CAS  Google Scholar 

  73. Jones HE, Gee JMW, Hutcheson IR, Nicholson RI. Insulin-like growth factor-1 receptor and resistance in breast cancer. Expert Rev Endocrinol Metab 2006;1:33–46.

    CAS  Google Scholar 

  74. Hutcheson IR, Knowlden JM, Hiscox SE, Barrow D, Gee JMW, Robertson JF, Ellis IO, Nicholson RI: Heregulin β1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res (submitted).

  75. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D: Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 2001;15:1344–59.

    PubMed  CAS  Google Scholar 

  76. Holloway JN, Murthy S, El-Ashry D. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells: the role of nuclear factor-kappaB. Mol Endocrinol 2004;18:1396–410.

    PubMed  CAS  Google Scholar 

  77. Gee JM, Giles MG, Nicholson RI. Extreme growth factor signalling can promote oestrogen receptor-alpha loss: therapeutic implications in breast cancer. Breast Cancer Res 2004;6:162–3.

    PubMed  CAS  Google Scholar 

  78. Nicholson RI, Hutcheson IR, Hiscox SE, Knowlden JM, Giles M, Barrow D, et al. Growth factor signalling and resistance to selective oestrogen receptor modulators and pure anti-oestrogens: the use of anti-growth factor therapies to treat or delay endocrine resistance in breast cancer. Endocr Relat Cancer 2005;12:S29–36.

    PubMed  CAS  Google Scholar 

  79. Giles MG, Fiegl H, Widschwendter M, Gee JM, Wakeling A, Nicholson RI. Loss of estrogen receptor (ER) expression in Mcf-7 cells following long-term exposure to Fulvesterant (Abstract). Breast Cancer Res Treat 2005;94:S243.

    Google Scholar 

  80. Gee J, Shaw V, Burmi R, McClelland R, Morgan H, Harper M, et al. Array profiling of survival and resistance genes in anti-hormone-treated breast cancer cells (Abstract). Intl J Mol Med 2004;14:S81.

    Google Scholar 

  81. Gee JM, Shaw VE, Hiscox SE, McClelland RA, Rushmere NK, Nicholson RI. Deciphering antihormone-induced compensatory mechanisms in breast cancer and their therapeutic implications. Endocr Rel Cancer 2006;13 Suppl 1:577-88.

    Google Scholar 

  82. Riggins RB, Zwart A, Nehra R, Clarke R. The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther 2005;4:33–41.

    PubMed  CAS  Google Scholar 

  83. Jones HE, Gee JM, Taylor KM, Barrow D, Williams HD, Rubini M, et al. Development of strategies for the use of anti-growth factor treatments. Endocr Relat Cancer 2005;12:173–82.

    Google Scholar 

  84. Jones HE, Goddard L, Gee JM, Hiscox S, Rubini M, Barrow D, et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 2004;11:793–814.

    PubMed  CAS  Google Scholar 

  85. Jones HE, Gee JMW, Barrow D, Holloway B, Tonge D, Nicholson RI. Maintenance of EGFR phosphorylation by the IGF-1R in the presence of gefitinib in lung cancer cells: co-targeting the EGFR and IGF-1R maximises anti-tumour effects. Proc. 4th International Symposium on Signal Transduction Modulators in Cancer Therapy A210 2006.

  86. Chakravati A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signalling. Cancer Res 2002;62:200–7.

    Google Scholar 

  87. Liu B, Fang M, Lu Y, Mendelsohn J, Fan Z. Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 2001;20:1913–22.

    PubMed  CAS  Google Scholar 

  88. Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett 2006;232:123–38.

    PubMed  CAS  Google Scholar 

  89. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005;65:11118–28.

    PubMed  CAS  Google Scholar 

  90. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001;93:1852–7.

    PubMed  CAS  Google Scholar 

  91. Motoyama AB, Hynes NE, Lane HA. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 2002;62:3151–8.

    PubMed  CAS  Google Scholar 

  92. Argiris A, Wang CX, Whalen SG, DiGiovanna MP. Synergistic interactions between tamoxifen and trastuzumab (Herceptin). Clin Cancer Res 2004;10:1409–20.

    PubMed  CAS  Google Scholar 

  93. Chu I, Blackwell K, Chen S, Slingerland J. The dual EErbB1/ErbB2 inhibitor, lapatinib (GW572016), co-operates with tamoxifen to inhibit both cell proliferation and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 2005;65:18–25.

    PubMed  CAS  Google Scholar 

  94. Johnston SR. Clinical efforts to combine endocrine agents with targeted therapies against epidermal growth factor receptor/human epidermal growth factor receptor 2 and mammalian target of rapamycin in breast cancer. Clin Cancer Res 2006;12:S1061–8.

    Google Scholar 

  95. Polychronis A, Sinnett HD, Hadjiminas D, Singhal H, Mansi JL, Shivapatham D, et al. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled phase II randomised trial. Lancet Oncol 2005;6: 383–91

    PubMed  CAS  Google Scholar 

  96. Shaw VE, Gee JMW, McClelland RA, Morgan H, Rushmere N, Nicholson RI. Identification of anti-hormone induced genes as potential therapeutic targets in breast cancer (Abstract). Proc Amer Assoc Cancer Res 2005;46:A3706.

    Google Scholar 

  97. Townsend PA, Stephanou A, Packham G, Latchman DS. BAG1: a multi-functional pro-survival molecule. Intl J Biochem Cell Biol 2005;37:251–9.

    CAS  Google Scholar 

  98. Ogihara T, Isobe T, Ichimura T, Taoka M, Funaki M, Sakoda H, et al. 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 1997;272:25267–74.

    PubMed  CAS  Google Scholar 

  99. Subramanian RR, Masters SC, Zhang H, Fu H. Functional conservation of 14-3-3 isoforms in inhibiting Bad-induced apoptosis. Exp Cell Res 2001;271:142–51.

    PubMed  CAS  Google Scholar 

  100. Oksvold MP, Huitfeldt HS, Langdon WY. Identification of 14-3-3ζ as an EGF receptor interacting protein. FEBS Lett 2004;569:207–10.

    PubMed  CAS  Google Scholar 

  101. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003;4:33–45.

    PubMed  CAS  Google Scholar 

  102. Qi W, Martinez JD. Reduction of 14-3-3 proteins correlates with increased sensitivity to killing of human lung cancer cells by ionizing radiation. Radiation Res 2003;160:217–23.

    PubMed  CAS  Google Scholar 

  103. Wu JT, Kral JG. The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 2005;123:158–69.

    PubMed  CAS  Google Scholar 

  104. Pratt MA, Bishop TE, White D, Yasvinski G, Menard M, Niu MY, et al. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol 2003;23:6887–900.

    PubMed  CAS  Google Scholar 

  105. Zhou Y, Eppenberger-Castori S, Eppenberger U, Benz CC. The NFkappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 2005;12:S37–46.

    PubMed  CAS  Google Scholar 

  106. Frasor J, Chang EC, Komm B, Lin CY, Vega VB, Liu ET, et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res 2006;66:7334–40.

    PubMed  CAS  Google Scholar 

  107. deGraffenried LA, Chandrasekar B, Friedrichs WE, Donzis E, Silva J, Hidalgo M, et al. NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol. 2004;15:885–90.

    Google Scholar 

  108. Hutcheson IR, Knowlden JM, Jones HE, Burmi RS, McClelland RA, Barrow D, et al. Inductive mechanisms limiting response to anti-epidermal growth factor receptor therapy. Endocr Rel Cancer 2006;13:S89–97.

    CAS  Google Scholar 

  109. Jones HE, Gee JMW, Hutcheson IR, Nicholson RI. Growth factor pathway switching: implications for the use of gefitinib and trastuzumab. Breast cancer Online 7:9 13:S89–97.

  110. Jones HE, Gee JM, Barrow D, Tonge D, Holloway B, Nicholson RI. Inhibition of insulin receptor isoform—A signalling restores sensitivity to gefitinib in previously de novo resistant colon cancer cells. Br J Cancer 2006;95:172–80.

    PubMed  CAS  Google Scholar 

  111. Ciardiello F, Bianco R, Caputo R, Caputo R, Damiano V, Troiani T, et al. Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 2004;10:784–93.

    PubMed  CAS  Google Scholar 

  112. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66:1500–8.

    PubMed  CAS  Google Scholar 

  113. Jones HE, Gee JMW, Hutcheson IR, Knowlden JM, Barrow D, Nicholson RI. Growth factor receptor interplay and resistance in cancer. Endocr Rel Cancer 2006;13:S45–51.

    CAS  Google Scholar 

  114. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002;3:383–94.

    PubMed  CAS  Google Scholar 

  115. Burmi RS, McClelland RA, Barrow D, Ellis IO, Robertson JFR, Nicholson RI, et al. Microarray studies reveal novel genes associated with endocrine resistance in breast cancer (Abstract). Breast Cancer Res 2006;8:S11.

    Google Scholar 

  116. Camirand A, Zakikhani M, Young F, Pollak M. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res 2005;7:R570–9.

    PubMed  Google Scholar 

  117. Lu D, Zhang H, Koo H, Tonra J, Balderes P, Prewett M, et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 2005;280:19665–72.

    PubMed  CAS  Google Scholar 

  118. Hiscox S, Morgan L, Barrow D, Dutkowski C, Wakeling A, Nicholson RI. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (’Iressa’, ZD1839). Clin Exp Metastasis 2004;21:201–12.

    PubMed  CAS  Google Scholar 

  119. Hiscox SE, Wakeling A, Nicholson RI. Inhibition of the metastatic potential the of tamoxifen-resistant breast cancer cells by gefitinib (‘Iressa’, ZD1839) Abstract. Proc Am Ass Cancer Res 2003;44:4863.

    Google Scholar 

  120. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, Barrow D, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 2006;118:290–301.

    PubMed  CAS  Google Scholar 

  121. Hiscox S, Morgan L, Green T, Barrow D, Gee JM, Nicholson RI. Elevated Src activity promotes cellular invasion and motility in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 2005;97:263–74.

    PubMed  Google Scholar 

  122. Cheung KL, Nicholson RI, Blamey RW, Robertson JF. Selection of primary breast cancer patients for adjuvant endocrine therapy—is oestrogen receptor alone adequate? Breast Cancer Res Treat 2001;65:155–62.

    PubMed  CAS  Google Scholar 

  123. Gee JMW, Madden TA, Robertson JFR, Nicholson RI, Clinical response and resistance to SERMS. In: Robertson JFR, Nicholson RI, Hayes DF, editors Endocrine Therapy in Breast Cancer. Martin Dunitz Ltd: London; 2002. p. 155–90.

    Google Scholar 

  124. Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001;37:9–15.

    Google Scholar 

  125. Rampaul RS, Pinder SE, Nicholson RI, Gullick WJ, Robertson JF, Ellis IO. Clinical value of epidermal growth factor receptor expression in primary breast cancer. Adv Anat Pathol 2005;12:271–3.

    PubMed  CAS  Google Scholar 

  126. Khirwadkar Y, Jordan NJ, Hiscox SE, Nicholson RI. Increased matrix metalloproteinase (MMP) expression in anti-oestrogen resistant breast carcinoma cell lines. Eur J Cancer 2005;3 Suppl P19.

  127. Harper ME, Smith C, Nicholson RI. Upregulation of CD44s and variants in anti-hormone resistant breast cancer cells. Eur J Cancer 2005;3:Suppl 25 38. Nicholson RI, Giles MG, Hutcheson IR, Madden TA, Gee JMW. Impact of altered growth factor signalling on endocrine response in breast cancer and the transition from ER+ to ER-disease. Breast Cancer Online 2004;7:issue 10.

  128. Hiscox S, Jordan NJ, Jiang WG, Harper ME, McClelland R, Smith C, et al. Chronic exposure to fulvestrant promotes overexpression of the c-Met receptor in breast cancer cells: implications for tumour-stroma interactions. Endocr Relat Cancer 2006;13:1085–99.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, R.I., Hutcheson, I.R., Jones, H.E. et al. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev Endocr Metab Disord 8, 241–253 (2007). https://doi.org/10.1007/s11154-007-9033-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-007-9033-5

Keywords

Navigation