Skip to main content

Introduction and background biology

  • Chapter
  • First Online:
Handbook of HER2-Targeted Agents in Breast Cancer
  • 587 Accesses

Abstract

The successful targeting of growth factor receptors is one of the most fruitful areas of new drug discovery and development in recent years. A key moment in this chapter of modern pharmacology is the outstanding results obtained from targeting the receptor tyrosine kinase (RTK) coded by the ERBB2 gene (also known as human epidermal growth factor receptor 2 [HER2]) with the humanized monoclonal antibody trastuzumab in women with HER2 overexpressing/amplified breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J. Global cancer statistics 2012. CA Cancer J Clin. 2015;65:87-108.

    Google Scholar 

  2. Jemal A, Center MM, Desantis C. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19:1893-1907.

    Google Scholar 

  3. Althuis MD, Dozier JD, Anderson WF. Global trends in breast cancer incidence and mortality 1973-1997. Int J Epidemiol. 2005;34:405-412.

    Google Scholar 

  4. Autier P, Boniol M, La Vecchia C. Disparities in breast cancer mortality trends between 30 European countries: retrospective trend analysis of WHO mortality database. BMJ. 2010;341:c3620.

    Google Scholar 

  5. INTRODUCTION AND BACKGROUND BIOLOGY • 11

    Google Scholar 

  6. Berry DA, Cronin KA, Plevritis SK, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Eng J Med. 2005;235:1784-1792.

    Google Scholar 

  7. Slamon DJ, Clark GM, Wong SG. Human breast cancer. Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177-182.

    Google Scholar 

  8. Sjogren S, Inganas M, Lindgren A. Prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J Clin Oncol. 1998.16:462-469.

    Google Scholar 

  9. Yarden Y, Sliwkowski M. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2001;2:127-137.

    Google Scholar 

  10. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004;4:361-370.

    Google Scholar 

  11. 1Menard S et al. HER2 as a prognostic factor in breast cancer. Oncology. 2001;61(suppl.2):67-72.

    Google Scholar 

  12. 1Ross JS et al. The HER-2/neu oncogene in breast cancer prognostic factor, predictive factor and target for therapy. Stem Cells. 1998;16:413-428.

    Google Scholar 

  13. Van de Vijver MJ et al. Neu-protein overexpression in breast cancer. Association with comedotype ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 1988; 319:1239-1245.

    Google Scholar 

  14. Lu J et al. 14-3-3zeta cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell. 2009;16:195-207.

    Google Scholar 

  15. Lipton A, Kostler WJ, Leitzel K. Quantitative HER2 protein levels predict outcome in fluorescence in situ hybridization-positive patients with metastatic breast cancer treated with trastuzumab. Cancer. 2010;116:5168-5178.

    Google Scholar 

  16. Wolff AC, Hammond ME, Hichs DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Practice Guideline Update. J Clin Oncol. 2013;31:3997-4013.

    Google Scholar 

  17. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986;319:226-230.

    Google Scholar 

  18. Coussens L, Yang-Feng TL, Liao YC. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985;230:1132-1139.

    Google Scholar 

  19. Brandt-Rauf PW, Monaco R, Pincus MR. Conformation of the transmembrane domain of the epidermal growth factor receptor. J Protein Chem. 1994;13:227-231.

    Google Scholar 

  20. Gullick WJ, Bottomley AC, Lofts FJ. Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein. EMBO J. 1992;11:43-48.

    Google Scholar 

  21. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Canc. 2012;12:553-563.

    Google Scholar 

  22. Schlessinger J. Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci. 1988;13:443-447.

    Google Scholar 

  23. Pinkas-Kramarski R, Soussan L, Waterman H. Diversification of Neu differentiation factor and epidermal growth factor signalling by combinatorial receptor interactions. EMBO J. 1996;15:2452-2467.

    Google Scholar 

  24. Graus-Porta D, Beerli RR, Daly JM. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16:1647-1655.

    Google Scholar 

  25. Ahn ER, Vogel CL. Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat. 2012;131:371-383

    Google Scholar 

  26. Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signalling, tumor biology and cancer therapy. Clin Cancer Res. 2013;73:6024-6035.

    Google Scholar 

  27. Amit I, Wides R, Yarden Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol. 2007;3:151.

    Google Scholar 

  28. Rexer BN, Arteaga, CL. Intrinsic and acquired resistance to HER2‑directed therapies in HER2 gene-amplified breast cancer. Crit Rev Oncog. 2012;17:1-16.

    Google Scholar 

  29. Rexer BN, Engelman JA, Arteaga CL. Overcoming resistance to tyrosine kinase inhibitors: lessons learned from cancer cells treated with EGFR antagonists. Cell Cycle. 2009; 8:18-22.

    Google Scholar 

  30. Scaltriti M, Rojo F, Ocana A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti‑HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99:628-638.

    Google Scholar 

  31. Hubalek M, Brunner C, Mattha K, Marth C. Resistance to HER2-targeted therapy: mechanisms of trastuzumab resistance and possible strategies to overcome unresponsiveness to treatment. Wien Klin Wochenschr. 2010;160:506-512.

    Google Scholar 

  32. Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res. 2009;15:7479-7491.

    Google Scholar 

  33. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2‑targeted therapy in human breast cancer. Nature Clin Pract Oncol. 2006; 3:269-280.

    Google Scholar 

  34. Sergina NV, Rausch M, Wang D, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445:437-441.

    Google Scholar 

  35. Berns K, Horlings HM, Hennessy BT, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12:395-402.

    Google Scholar 

  36. Loibl S, von Minckwitz G, Schneeweiss A, et al. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (HER2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol. 2014;32:3212-3220.

    Google Scholar 

  37. Majewski IJ, Nuciforo P, Mittempergher L, et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol. 2015;33:1334-1339.

    Google Scholar 

  38. Liu L, Greger J, Shi H, et al. Novel mechanism of lapatinib resistance in HER2‑positive breast tumor cells: activation of AXL. Cancer Res. 2009;69:6871-6878.

    Google Scholar 

  39. Xia W, Bacus S, Hegde P, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Nat Acad Sci USA. 2006;103:7795-7800.

    Google Scholar 

  40. Prempree T, Wongpaksa C. Mutations of HER2 gene in HER2-positive metastatic breast cancer. J Clin Oncol. 2006;24:13118.

    Google Scholar 

  41. Modi S, Stopeck A, Linden, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 2011;17:5132-5139.

    Google Scholar 

  42. Goldblatt EM, Erickson PA, Gentry ER, Gryaznov SM, Herbert BS. Lipid-conjugated telomerase template antagonists sensitize resistant HER2-positive breast cancer cells to trastuzumab. Breast Cancer Res Treat. 2009;118:21-32.

    Google Scholar 

  43. Nahta R, O’Regan RM. Therapeutic implications of estrogen receptor signalling in HER2-positive breast cancers. Breast Cancer Res Treat. 2012;135:39-48.

    Google Scholar 

  44. Gluck S, Arteaga CL, Osborne CK. Optimizing chemotherapy-free survival for the ER/HER2-positive metastatic breast cancer patient. Clin Cancer Res. 2011;17:5559–5561.

    Google Scholar 

  45. Sabnis G, Schayowitz A, Goloubeva O, Macedo L, Brodie A. Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Res. 2009;69:1416-1428.

    Google Scholar 

  46. Mohd Sharial MS, Crown J, Hennessy BT. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer. Ann Oncol. 2012;23: 3007-3016

    Google Scholar 

  47. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009; 69:9330-9336.

    Google Scholar 

  48. Baselga J, Gelmon KA, Verma S, et al. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol. 2010; 1;28:1138-1144.

    Google Scholar 

  49. Gianni L, Pienkowski T, Im YH, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25-32.

    Google Scholar 

  50. Swain SM, Kim SB, Cortes J, et al. Pertuzumab, trastuzumab and docetaxel for HER2-positive metastatic breast cancer. (CLEOPATRA study): overall survival results from a randomized, double-blind, placebo-controlled phase 3 study. Lancer Oncol. 2013;14:461-471.

    Google Scholar 

  51. Baselga J, Cortes J, Im SA, et al. Biomarker analyses in CLEOPATRA: a phase III, placebocontrolled study of pertuzumab in human epidermal growth factor receptor 2-positive firstline metastatic breast cancer. J Clin Oncol. 2014; 32:3753-3761.

    Google Scholar 

  52. de Azambuja E, Holmes AP, Piccart-Gebhart M, et al. Lapatanib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomized, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15:1137-1146.

    Google Scholar 

  53. Junttila TT, Akita RW, Parsons K, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15:429-440.

    Google Scholar 

  54. Jerusalem G, Fasolo A, Dieras V, et al. Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. 2011;125:447-455.

    Google Scholar 

  55. Andre F, O’Regan R, Ozguroglu M, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomized, double-blind, placebocontrolled trial. Lancet Oncol. 2014;15: 580-591.

    Google Scholar 

  56. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28:4390-4399.

    Google Scholar 

  57. Bellati F, Napoletano, Ruscito I, Liberati M, Panici PB, Nuti M. Cellular adaptive immune system plays a crucial role in trastuzumab clinical efficacy. J Clin Oncol. 2010;28:e369-370.

    Google Scholar 

  58. Rody A, Holtrich U, Pusztai L, et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009;11: R15.

    Google Scholar 

  59. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010; 28:105-113.

    Google Scholar 

  60. Gianni L, Bianchini G, Valagussa P, et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res. 2012;72 (24 suppl): S6-S7.

    Google Scholar 

  61. Gianni L, Pienkowski T, Im Y-H, et al. Effi cacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, infl ammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25-32.

    Google Scholar 

  62. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer. 2007;7: 95-106.

    Google Scholar 

  63. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12: 237-251.

    Google Scholar 

  64. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480-489.

    Google Scholar 

  65. Bisnchini G., Gianni L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol.2014;15:e58-68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fasolo, A., Gianni, L. (2016). Introduction and background biology. In: Handbook of HER2-Targeted Agents in Breast Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-28216-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28216-9_1

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-28214-5

  • Online ISBN: 978-3-319-28216-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics