Skip to main content

Advertisement

Log in

Mechanisms involved in normal and pathological osteoclastogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Osteoclasts are bone-resorbing cells that play an essential role in bone remodeling. Defects in osteoclasts result in unbalanced bone remodeling and are linked to many bone diseases including osteoporosis, rheumatoid arthritis, primary bone cancer, and skeletal metastases. Receptor activator of NF-kappaB ligand (RANKL) is a classical inducer of osteoclast formation. In the presence of macrophage-colony-stimulating factor, RANKL and co-stimulatory signals synergistically regulate osteoclastogenesis. However, recent discoveries of alternative pathways for RANKL-independent osteoclastogenesis have led to a reassessment of the traditional mechanisms that regulate osteoclast formation. In this review, we provide an overview of signaling pathways and other regulatory elements governing osteoclastogenesis. We also identify how osteoclastogenesis is altered in pathological conditions and discuss therapeutic targets in osteoclasts for the treatment of skeletal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hancox NM (1949) The osteoclast. Biol Rev Camb Philos Soc 24:448–471

    Article  PubMed  CAS  Google Scholar 

  2. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  PubMed  CAS  Google Scholar 

  3. Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29:403–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  PubMed  CAS  Google Scholar 

  5. Novack DV, Teitelbaum SL (2008) The osteoclast: friend or foe? Annu Rev Pathol 3:457–484

    Article  PubMed  CAS  Google Scholar 

  6. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM et al (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186:2075–2080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M et al (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    Article  PubMed  CAS  Google Scholar 

  9. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  10. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  PubMed  CAS  Google Scholar 

  12. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y (1999) TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 189:1025–1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA et al (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50

    Article  PubMed  CAS  Google Scholar 

  14. Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H et al (2009) Central control of fever and female body temperature by RANKL/RANK. Nature 462:505–509

    Article  PubMed  CAS  Google Scholar 

  15. Ikeda T, Kasai M, Utsuyama M, Hirokawa K (2001) Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 142:1419–1426

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Darnay BG, Ni J, Moore PA, Aggarwal BB (1999) Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 274:7724–7731

    Article  PubMed  CAS  Google Scholar 

  19. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K et al (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    Article  PubMed  CAS  Google Scholar 

  21. Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K et al (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB 2, and TRAF6. Mol Cell Biol 22:992–1000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Huang H, Ryu J, Ha J, Chang EJ, Kim HJ, Kim HM et al (2006) Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ 13:1879–1891

    Article  PubMed  CAS  Google Scholar 

  23. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G et al (2005) The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11:394–399

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL–RANK signaling system. Immunol Rev 208:30–49

    Article  PubMed  CAS  Google Scholar 

  25. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA et al (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448

    Article  PubMed  CAS  Google Scholar 

  26. Takayanagi H (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 1116:227–237

    Article  PubMed  CAS  Google Scholar 

  27. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  28. Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM et al (2008) NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 118:3775–3789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mocsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC et al (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 101:6158–6163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E et al (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  PubMed  CAS  Google Scholar 

  31. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H et al (2008) Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132:794–806

    Article  PubMed  CAS  Google Scholar 

  32. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P (1993) Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA 90:4485–4489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  PubMed  CAS  Google Scholar 

  34. Zou W, Reeve JL, Liu Y, Teitelbaum SL, Ross FP (2008) DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell 31:422–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kim HS, Kim DK, Kim AR, Mun SH, Lee SK, Kim JH et al (2012) Fyn positively regulates the activation of DAP12 and FcRgamma-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell Signal 24:1306–1314

    Article  PubMed  CAS  Google Scholar 

  36. Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R (2006) PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 116:2869–2879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Choi HK, Kang HR, Jung E, Kim TE, Lin JJ, Lee SY (2013) Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res 23:524–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M et al (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P et al (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198:669–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL et al (2006) TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res 21:237–245

    Article  PubMed  CAS  Google Scholar 

  42. Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB et al (2009) IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol 183:2444–2455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A et al (2012) TREM2 and beta-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol 188:2612–2621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Negishi-Koga T, Gober HJ, Sumiya E, Komatsu N, Okamoto K, Sawa S et al (2015) Immune complexes regulate bone metabolism through FcRgamma signalling. Nat Commun 6:6637

    Article  PubMed  CAS  Google Scholar 

  45. Lee MJ, Lim E, Mun S, Bae S, Murata K, Ivashkiv LB et al (2016) Intravenous immunoglobulin (IVIG) attenuates TNF-induced pathologic bone resorption and suppresses osteoclastogenesis by inducing A20 expression. J Cell Physiol 231:449–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  47. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C et al (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K et al (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749

    Article  PubMed  CAS  Google Scholar 

  49. Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G et al (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22:539–546

    Article  PubMed  CAS  Google Scholar 

  50. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605

    Article  PubMed  CAS  Google Scholar 

  51. Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP et al (2009) Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J Immunol 183:7223–7233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature 485:69–74

    Article  PubMed  CAS  Google Scholar 

  53. Ivashkiv LB, Zhao B, Park-Min KH, Takami M (2011) Feedback inhibition of osteoclastogenesis during inflammation by IL-10, M-CSF receptor shedding, and induction of IRF8. Ann N Y Acad Sci 1237:88–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ikeda K, Takeshita S (2016) The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem 159:1–8

    Article  PubMed  CAS  Google Scholar 

  55. Indo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A et al (2013) Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28:2392–2399

    Article  PubMed  CAS  Google Scholar 

  56. Jin Z, Wei W, Yang M, Du Y, Wan Y (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab 20:483–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zeng R, Faccio R, Novack DV (2015) Alternative NF-kappaB regulates RANKL-induced osteoclast differentiation and mitochondrial biogenesis via independent mechanisms. J Bone Miner Res 30(12):2287–2299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N et al (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266

    Article  PubMed  CAS  Google Scholar 

  59. Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J et al (2010) PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wan Y (2010) PPARgamma in bone homeostasis. Trends Endocrinol Metab 21:722–728

    Article  PubMed  CAS  Google Scholar 

  61. Wei W, Schwaid AG, Wang X, Wang X, Chen S, Chu Q et al (2016) Ligand activation of ERRalpha by cholesterol mediates statin and bisphosphonate effects. Cell Metab 23(3):479–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR et al (2017) MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRalpha. J Clin Invest 127:2555–2568

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T et al (2015) DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21:281–287

    Article  PubMed  CAS  Google Scholar 

  64. Cox TR, Rumney RMH, Schoof EM, Perryman L, Hoye AM, Agrawal A et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tsukasaki M, Hamada K, Okamoto K, Nagashima K, Terashima A, Komatsu N et al (2017) LOX fails to substitute for RANKL in osteoclastogenesis. J Bone Miner Res 32:434–439

    Article  PubMed  CAS  Google Scholar 

  66. Schett G, Gravallese E (2012) Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8:656–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL (2005) M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 115:3418–3427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G et al (2016) RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 75:1187–1195

    Article  PubMed  CAS  Google Scholar 

  69. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL–RANK interaction. J Exp Med 191:275–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864

    Article  PubMed  CAS  Google Scholar 

  71. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F et al (2005) Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis. J Exp Med 202:589–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yokota K, Sato K, Miyazaki T, Kitaura H, Kayama H, Miyoshi F et al (2014) Combination of tumor necrosis factor alpha and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol 66:121–129

    Article  PubMed  CAS  Google Scholar 

  74. O’Brien W, Fissel BM, Maeda Y, Yan J, Ge X, Gravallese EM et al (2016) RANK-independent osteoclast formation and bone erosion in inflammatory arthritis. Arthritis Rheumatol 68:2889–2900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309

    Article  PubMed  CAS  Google Scholar 

  76. Chiu YG, Ritchlin CT (2017) Denosumab: targeting the RANKL pathway to treat rheumatoid arthritis. Expert Opin Biol Ther 17:119–128

    Article  PubMed  CAS  Google Scholar 

  77. Usategui-Martin R, Calero-Paniagua I, Garcia-Aparicio J, Corral-Gudino L, Del Pino Montes J, Gonzalez Sarmiento R (2016) VAV3 gene polymorphism is associated with Paget’s disease of bone. Genet Test Mol Biomark 20:335–337

    Article  CAS  Google Scholar 

  78. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL et al (2005) Vav3 regulates osteoclast function and bone mass. Nat Med 11:284–290

    Article  PubMed  CAS  Google Scholar 

  79. Susani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R et al (2004) TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 24:225–235

    Article  PubMed  CAS  Google Scholar 

  80. Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M et al (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747

    Article  PubMed  CAS  Google Scholar 

  81. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536

    Article  PubMed  CAS  Google Scholar 

  82. Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171

    Article  PubMed  CAS  Google Scholar 

  83. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK et al (2012) Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419

    Article  PubMed  CAS  Google Scholar 

  84. Toulis KA, Anastasilakis AD (2010) Increased risk of serious infections in women with osteopenia or osteoporosis treated with denosumab. Osteoporos Int 21:1963–1964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award numbers R01 AR069562 and AR073156. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hyun Park-Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park-Min, KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell. Mol. Life Sci. 75, 2519–2528 (2018). https://doi.org/10.1007/s00018-018-2817-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2817-9

Keywords

Navigation