Skip to main content
Log in

Synthesis of Z-scheme (001)-TiO2/Bi5O7I heterojunctions with enhanced interfacial charge separation and photocatalytic degradation of Rhodamine B

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A Z-scheme heterojunction was constructed by loading (001)-faceted TiO2 onto Bi5O7I through a simple deposition method. Characterization of the obtained photocatalysts included SEM, TEM, XRD, FT-IR, XPS, UV–vis DRS, and PL. The results showed that (001)-TiO2 nanosheets had been successfully anchored to the Bi5O7I nanobelts and the heterojunctions had been formed between them. The catalytic ability of the samples was assessed by degradation of Rhodamine B (RhB). The sample TB-20 exhibited the greatest apparent rate (0.04315 min−1), which was about 3 times that of pure Bi5O7I. The enhanced photocatalytic activity can be attributed to the visible response and charge division of the (001)-TiO2/Bi5O7I composite. The recyclability of the catalyst also showed good stability after four cycles with 90% degradation efficiency. Moreover, the degradation of RhB follows pseudo-first-order kinetics by non-linear least squares fitting to the degradation data. A plausible photocatalytic reaction mechanism has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Long Z, Li Q, Wei T et al (2020) Historical development and prospects of photocatalysts for pollutant removal in water. J Hazard Mater 395:122599–122599. https://doi.org/10.1016/j.jhazmat.2020.122599

    Article  CAS  PubMed  Google Scholar 

  2. Guo F, Huang X, Chen Z et al (2020) Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. Chem Eng J 395:125118–125120. https://doi.org/10.1016/j.cej.2020.125118

    Article  CAS  Google Scholar 

  3. Ateia M, Alalm MG, Awfa D et al (2020) Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: a critical review. Sci Total Environ 698:0048–9697. https://doi.org/10.1016/j.scitotenv.2019.134197

    Article  CAS  Google Scholar 

  4. Fatima R, Afridi MN, Kumar V et al (2019) Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J Clean Prod 231:899–912. https://doi.org/10.1016/j.jclepro.2019.05.292

    Article  CAS  Google Scholar 

  5. Al-Mamun MR, Kader S, Islam MS et al (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7:103248. https://doi.org/10.1016/j.jece.2019.103248

    Article  CAS  Google Scholar 

  6. Cao Y, Yu Y, Zhang P et al (2013) An enhanced visible-light photocatalytic activity of TiO2 by nitrogen and nickel–chlorine modification. Sep Purif Technol 104:256–262. https://doi.org/10.1016/j.seppur.2012.11.030

    Article  CAS  Google Scholar 

  7. Kim S, Cho Y, Rhee R et al (2020) Black TiO2: what are exact functions of disorder layer. Carbon Energy 2:44–53. https://doi.org/10.1002/cey2.32

    Article  CAS  Google Scholar 

  8. Li K, Zhang Y, Lin YZ et al (2019) Versatile functional porous cobalt-nickel phosphide-carbon cocatalyst derived from a metal-organic framework for boosting the photocatalytic activity of graphitic carbon nitride. ACS Appl Mater Interfaces 11:28918–28927. https://doi.org/10.1021/acsami.9b09312

    Article  CAS  PubMed  Google Scholar 

  9. Sun S, Sun M, Fang Y et al (2016) One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity. RSC Adv 6:13063–13071. https://doi.org/10.1039/c5ra26700e

    Article  CAS  Google Scholar 

  10. Mazierski P, Malankowska A, Kobylański M et al (2017) Photocatalytically active TiO2/Ag2O nanotube arrays interlaced with silver nanoparticles obtained from the one-step anodic oxidation of Ti–Ag alloys. ACS Catal 7:2753–2764. https://doi.org/10.1021/acscatal.7b00056

    Article  CAS  Google Scholar 

  11. Fu R, Zeng X, Ma L et al (2016) Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2−x/BiOCl heterojunctions. J Power Sources 312:12–22. https://doi.org/10.1016/j.jpowsour.2016.02.038

    Article  CAS  Google Scholar 

  12. Cai Q, Wang F, He J et al (2020) Oxygen defect boosted photocatalytic hydrogen evolution from hydrogen sulfide over active 0 0 1 facet in anatase TiO2. Appl Surf Sci 517:146198. https://doi.org/10.1016/j.apsusc.2020.146198

    Article  CAS  Google Scholar 

  13. He Y, Yan Q, Liu X et al (2020) Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant 001 facets. J Photochem Photobiol A 393:112400. https://doi.org/10.1016/j.jphotochem.2020.112400

    Article  CAS  Google Scholar 

  14. Peng C, Xu W, Wei P et al (2019) Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: effect of surface coverage. Int J Hydrogen Energy 44:29975–29985. https://doi.org/10.1016/j.ijhydene.2019.09.190

    Article  CAS  Google Scholar 

  15. Wang H, Wu D, Yang C et al (2019) Multi-functional amorphous TiO2 layer on ZIF-67 for enhanced CO2 photoreduction performances under visible light. J CO2 Util 34:411–421. https://doi.org/10.1016/j.jcou.2019.07.011

    Article  CAS  Google Scholar 

  16. Liu X, Du G, Li M (2019) True photoreactivity origin of Ti(3+)-doped anatase TiO2 crystals with respectively dominated exposed 001}, {101}, and {100 facets. ACS Omega 4:14902–14912. https://doi.org/10.1021/acsomega.9b01648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shoja A, Habibi-Yangjeh A, Mousavi M et al (2020) BiOBr and BiOCl decorated on TiO2 QDs: impressively increased photocatalytic performance for the degradation of pollutants under visible light. Adv Powder Technol 31:3582–3596. https://doi.org/10.1016/j.apt.2020.07.002

    Article  CAS  Google Scholar 

  18. Wang X, Liu L, An H et al (2019) (Sr0.6Bi0.305)2Bi2O7 as a new visible-light-responsive photocatalyst: an experimental and theoretical study. Mater Res Bull 118: 110484. https://doi.org/10.1016/j.materresbull.2019.05.009

  19. Choi YI, Jeon KH, Kim HS et al (2016) TiO2/BiOX (X=Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation. Sep Purif Technol 160:28–42. https://doi.org/10.1016/j.seppur.2016.01.009

    Article  CAS  Google Scholar 

  20. Sharma N, Pap Z, Székely I et al (2021) Combination of iodine-deficient BiOI phases in the presence of CNT to enhance photocatalytic activity towards phenol decomposition under visible light. Appl Surf Sci 565:150605. https://doi.org/10.1016/j.apsusc.2021.150605

    Article  CAS  Google Scholar 

  21. Xiao X, Zhang W-D (2011) Hierarchical Bi7O9I3 micro/nano-architecture: facile synthesis, growth mechanism, and high visible light photocatalytic performance. RSC Adv 1:1099. https://doi.org/10.1039/c1ra00323b

    Article  CAS  Google Scholar 

  22. Hou J, Wei R, Wu X et al (2018) Lantern-like bismuth oxyiodide embedded typha-based carbon via in situ self-template and ion exchange-recrystallization for high-performance photocatalysis. Dalton Trans 47:6692–6701. https://doi.org/10.1039/c8dt00570b

    Article  CAS  PubMed  Google Scholar 

  23. He R, Cao S, Yu J et al (2016) Microwave-assisted solvothermal synthesis of Bi4O5I2 hierarchical architectures with high photocatalytic performance. Catal Today 264:221–228. https://doi.org/10.1016/j.cattod.2015.07.029

    Article  CAS  Google Scholar 

  24. Liu C, Wang XJ (2016) Room temperature synthesis of Bi4O5I2 and Bi5O7I ultrathin nanosheets with a high visible light photocatalytic performance. Dalton Trans 45:7720–7727. https://doi.org/10.1039/c6dt00530f

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Zhou C, Yin L et al (2019) Iodine-deficient BiOI nanosheets with lowered valence band maximum to enable visible light photocatalytic Activity. ACS Sustain Chem Eng 7:7900–7907. https://doi.org/10.1021/acssuschemeng.9b00548

    Article  CAS  Google Scholar 

  26. Dai B, Zhang A, Zhang D et al (2019) Effect of preparation method on the structure and photocatalytic performance of BiOI and Bi5O7I for Hg0 removal. Atmos Pollut Res 10:355–362. https://doi.org/10.1016/j.apr.2018.08.012

    Article  CAS  Google Scholar 

  27. Cao J, Li X, Lin H et al (2012) Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance. Mater Lett 76:181–183. https://doi.org/10.1016/j.matlet.2012.02.087

    Article  CAS  Google Scholar 

  28. Yadav M, Garg S, Chandra A et al (2021) Quercetin-mediated 3-D hierarchical BiOI-Q and BiOI-Q-Ag nanostructures with enhanced photodegradation efficiency. J Alloy Compd 856:156812. https://doi.org/10.1016/j.jallcom.2020.156812

    Article  CAS  Google Scholar 

  29. Zhou M, Wu J, Wang H et al (2020) Fabrication of Z-Scheme heterojunction g-C3N4/Yb3+-Bi5O7I photocatalysts with enhanced photocatalytic performance under visible irradiation for Hg0 removal. Energy Fuels 34:16445–16455. https://doi.org/10.1021/acs.energyfuels.0c03368

    Article  CAS  Google Scholar 

  30. Sun XY, Zhang X, Sun X et al (2019) Photocatalytic properties of CuO/(001)-TiO2 composites synthesized by the vapor–thermal method. Appl Organomet Chem 33:0268–2605. https://doi.org/10.1002/aoc.5173

    Article  CAS  Google Scholar 

  31. Liu X, Chen J, Yang L et al (2022) 2D/2D g-C3N4/TiO2 with exposed (001) facets Z-Scheme composites accelerating separation of interfacial charge and visible photocatalytic degradation of Rhodamine B. J Phys Chem Solids 160:110339. https://doi.org/10.1016/j.jpcs.2021.110339

    Article  CAS  Google Scholar 

  32. Zhou X, Wu J, Li Q et al (2017) Carbon decorated In 2 O 3 /TiO 2 heterostructures with enhanced visible-light-driven photocatalytic activity. J Catal 355:26–39. https://doi.org/10.1016/j.jcat.2017.09.006

    Article  CAS  Google Scholar 

  33. Wu G, Zhao Y, Li Y et al (2017) Assembled and isolated Bi5O7I nanowires with good photocatalytic activities. CrystEngComm 19:2113–2125. https://doi.org/10.1039/c7ce00439g

    Article  CAS  Google Scholar 

  34. Hu Y, Niu Q, Wang Y et al (2021) Highly efficient removal mechanism of dimethyl phthalate over an economical 3D {001}TiO2/Ti photoelectrode with enhanced photoelectrocatalytic activity and long service life. Appl Catal B 285:119812. https://doi.org/10.1016/j.apcatb.2020.119812

    Article  CAS  Google Scholar 

  35. Zeng Y, Xu Y, Zhong D et al (2021) BiOBr/Bi5O7I/TiO2/Ti photoanode assembled visible light responsive photocatalytic fuel cell for efficient Rhodamine B degradation and stable electricity generation. ChemistrySelect 6:8912–8918. https://doi.org/10.1002/slct.202102309

    Article  CAS  Google Scholar 

  36. Cheng H, Wu J, Tian F et al (2019) Visible-light photocatalytic oxidation of gas-phase Hg0 by colored TiO2 nanoparticle-sensitized Bi5O7I nanorods: enhanced interfacial charge transfer based on heterojunction. Chem Eng J 360:951–963. https://doi.org/10.1016/j.cej.2018.07.093

    Article  CAS  Google Scholar 

  37. Lin J, Hu Z, Li H et al (2019) Ultrathin nanotubes of Bi5O7I with a reduced band gap as a high-performance photocatalyst. Inorg Chem 58:9833–9843. https://doi.org/10.1021/acs.inorgchem.9b00858

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Zhang X, Zhang Z et al (2021) Ultrahigh charge separation achieved by selective growth of Bi4O5I2 nanoplates on electron-accumulating facets of Bi5O7I nanobelts. ACS Appl Mater Interfaces 13:39985–40001. https://doi.org/10.1021/acsami.1c06188

    Article  CAS  PubMed  Google Scholar 

  39. Malefane ME (2020) Co3O4/Bi4O5I2/Bi5O7I C-scheme heterojunction for degradation of organic pollutants by light-emitting diode irradiation. ACS Omega 5:26829–26844. https://doi.org/10.1021/acsomega.0c03881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chi Q, Zhu G, Jia D et al (2021) Built-in electric field for photocatalytic overall water splitting through a TiO2/BiOBr P-N heterojunction. Nanoscale 13:4496–4504. https://doi.org/10.1039/d0nr08928a

    Article  CAS  PubMed  Google Scholar 

  41. Jiang Z, Wan W, Wei W et al (2017) Gentle way to build reduced titanium dioxide nanodots integrated with graphite-like carbon spheres: from DFT calculation to experimental measurement. Appl Catal B 204:283–295. https://doi.org/10.1016/j.apcatb.2016.11.044

    Article  CAS  Google Scholar 

  42. Guan M, Zhang X, Bao J et al (2019) Two-dimensional ultrathin BiOCl nanosheet/graphene heterojunction with enhanced photocatalytic activity. Nanotechnology 31:085706. https://doi.org/10.1088/1361-6528/ab5535

    Article  CAS  PubMed  Google Scholar 

  43. Xiao X, Xing C, He G et al (2014) Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl Catal B 148–149:154–163. https://doi.org/10.1016/j.apcatb.2013.10.055

    Article  CAS  Google Scholar 

  44. Yao C, Wang X, Zhao W et al (2020) Probing the facet-dependent intermediate in the visible-light degradation of RhB by carbon-coated anatase TiO2 nanoparticles. J Alloy Compd 846:156335. https://doi.org/10.1016/j.jallcom.2020.156335

    Article  CAS  Google Scholar 

  45. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  46. Sahin M, Gubbuk IH (2022) Green synthesis of palladium nanoparticles and investigation of their catalytic activity for methylene blue, methyl orange and rhodamine B degradation by sodium borohydride. Reac Kinet Mech Cat 135:999–1010. https://doi.org/10.1007/s11144-022-02185-y

    Article  CAS  Google Scholar 

  47. Ou Li, Lyu et al (2019) Facet-dependent interfacial charge transfer in TiO2/nitrogen-doped graphene quantum dots heterojunctions for visible-light driven photocatalysis. Catalysts 9:2073–4344. https://doi.org/10.3390/catal9040345

    Article  CAS  Google Scholar 

  48. Xia J, Yin S, Li H et al (2011) Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans 40:5249–5258. https://doi.org/10.1039/c0dt01511c

    Article  CAS  PubMed  Google Scholar 

  49. Hu L, He H, Xia D et al (2018) Highly efficient performance and conversion pathway of photocatalytic CH3SH oxidation on self-stabilized indirect Z-Scheme g-C3N4/I(3-)-BiOI. ACS Appl Mater Interfaces 10:18693–18708. https://doi.org/10.1021/acsami.8b03250

    Article  CAS  PubMed  Google Scholar 

  50. Wu Z, Liang Y, Yuan X et al (2020) MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124921

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xue C, Zhang T, Ding S et al (2017) Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity. ACS Appl Mater Interfaces 9:16091–16102. https://doi.org/10.1021/acsami.7b00433

    Article  CAS  PubMed  Google Scholar 

  52. Hu J, Weng S, Zheng Z et al (2014) Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. J Hazard Mater 264:293–302. https://doi.org/10.1016/j.jhazmat.2013.11.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China: [Grant Number 81974317].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensong Lin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17944 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, X., Lin, W., Chen, J. et al. Synthesis of Z-scheme (001)-TiO2/Bi5O7I heterojunctions with enhanced interfacial charge separation and photocatalytic degradation of Rhodamine B. Reac Kinet Mech Cat 135, 3447–3459 (2022). https://doi.org/10.1007/s11144-022-02309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02309-4

Keywords

Navigation