Skip to main content
Log in

Investigation of novel titanate nanotubes modified with Ce, Fe, Zn and Zr for efficient dye degradation performance, inhibition of bacterial and fungal growth and anticorrosion activity in acid medium

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The aim of this article is to study the photodegradation, anticorrosion, antibacterial and antifungal properties of doped titanate nanotubes prepared by hydrothermal treatment using different metals: Ce, Fe, Zn and Zr. The main purpose of this work is to prove the possibility of using these nanotubes as a coating for surfaces capable of protecting these surfaces against corrosion, degrading the molecules adsorbed at their surfaces as well as eliminating any bacteria or fungi that can attack these surfaces. The textural and morphological properties of the nanopowders were determined by different analysis techniques such as: X-ray diffraction, reflection diffuse spectroscopy, thermogravimetric analysis, adsorption–desorption of N2, Infrared spectroscopy and Raman spectroscopy. The results of the characterizations showed that nanotubes can be obtained with a hollow structure and an important thermal stability of whatever element nature. However, the photocatalytic test ends with the photodegradation under UV–Visible irradiation of the three industrial molecules: Malachite Green, Methyl Orange and Tannic Acid having different molecule charges. It was noted that the degradation rates of the order of 100% were obtained in fairly short times. However, the studied materials show an inhibitory power of fungi, bacteria and high anticorrosion activities in acid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20(5):831–843

    Article  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  3. Xue B, Sun T, Wu JK, Mao F, Yang W (2015) AgI/TiO2 nanocomposites: ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity. Ultrason Sonochem 22:1–6

    Article  PubMed  CAS  Google Scholar 

  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and application. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  5. Yu J-H, Nam S-H, Lee JW, Kim DI, Boo J-H (2018) Oxidation state and structural studies of vanadium-doped titania particles for the visible light-driven photocatalytic activity. Appl Surf Sci 472:46–53

    Article  CAS  Google Scholar 

  6. Ying L, Xueping G, Huaiyong Z, Zhanfeng Z, Tianying Y, Feng W (2005) Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater 15:1310–1318

    Article  CAS  Google Scholar 

  7. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7(5):1286–1289

    Article  CAS  PubMed  Google Scholar 

  8. Ameur N, Bachir R (2020) Study of 1D titanate-based materials—new modification of the synthesis procedure and surface properties-recent applications. ChemistrySelect 5(3):1164–1185

    Article  CAS  Google Scholar 

  9. Liu Z, Sun DD, Guo P, Leckie JO (2007) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7(4):1081–1085

    Article  CAS  PubMed  Google Scholar 

  10. Takezawa Y, Imai H (2006) Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area. Small 2(3):390–393

    Article  CAS  PubMed  Google Scholar 

  11. Matsumoto Y, Koinuma M, Iwanaga Y, Sato T, Ida S (2009) N doping of oxide nanosheets. J Am Chem Soc 131(19):6644–6645

    Article  CAS  PubMed  Google Scholar 

  12. Preda S, Teodorescu VS, Musuc AM, Andronescu C, Zaharescu M (2012) Influence of the TiO2 precursors on the thermal and structural stability of titanate-based nanotubes. J Mater Res 28(03):294–303

    Article  CAS  Google Scholar 

  13. Ou H-H, Lo S-L (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58(1):179–191

    Article  CAS  Google Scholar 

  14. Liu N, Chen X, Zhang J, Schwank JW (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51

    Article  CAS  Google Scholar 

  15. Liang C-H, Li F-B, Liu C-S, Lü J-L, Wang X-G (2008) The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes Pigm 76(2):477–484

    Article  CAS  Google Scholar 

  16. Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109(51):24260–24267

    Article  CAS  PubMed  Google Scholar 

  17. Klosek S, Raftery D (2001) Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J Phys Chem B 105(14):2815–2819

    Article  CAS  Google Scholar 

  18. Zhang L, Mohamed HH, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol C 13(4):263–276

    Article  CAS  Google Scholar 

  19. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114(19):9385–9454

    Article  CAS  PubMed  Google Scholar 

  20. Ameur N, Brahimi FT, Bensaada N, Gouhas H, Ferouani G (2020) Enhanced photocatalytic degradation of organic pollutants and anticorrosion of mild steel by vanadium modified titanate nanotubes (X%V-TiNTs). ChemistrySelect 5(43):13550–13558

    Article  CAS  Google Scholar 

  21. Sekino T, Okamoto T, Kasuga T, Kusunose T, Nakayama T, Niihara K (2006) Synthesis and properties of titania nanotube doped with small amount of cations. Key Eng Mater 317–318:251–254

    Article  Google Scholar 

  22. Qu X, Xie D, Cao L, Du F (2014) Synthesis and characterization of TiO2/ZrO2 coaxial core–shell composite nanotubes for photocatalytic applications. Ceram Int 40(8):12647–12653

    Article  CAS  Google Scholar 

  23. Sun C, Liu L, Qi L, Li H, Zhang H, Li C (2011) Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation. J Colloid Interface Sci 364(2):288–297

    Article  CAS  PubMed  Google Scholar 

  24. Zhu L, Liu G, Duan X, Zhang ZJ (2011) A facile wet chemical route to prepare ZnO/TiO2 nanotube composites and their photocatalytic activities. J Mater Res 25(7):1278–1287

    Article  CAS  Google Scholar 

  25. Hassanzadeh-Tabrizi SA, Motlagh MM, Salahshour S (2016) Synthesis of ZnO/CuO nanocomposite immobilized on γ-Al2O3 and application for removal of methyl orange. Appl Surf Sci 384:237–243

    Article  CAS  Google Scholar 

  26. Bahrudin NN, Nawi MA (2019) S Sabar (2019) Immobilized chitosan-montmorillonite composite adsorbent and its photocatalytic regeneration for the removal of methyl orange. Reac Kinet Mech Cat 126:1135–1153

    Article  CAS  Google Scholar 

  27. Dbira S, Bensalah N, Zagho MM, Ennahaoui M, Bedoui A (2019) Oxidative degradation of tannic acid in aqueous solution by UV/S2O82− and UV/H2O2/Fe2+ processes: a comparative study. Appl Sci 9(1):156

    Article  CAS  Google Scholar 

  28. Deng Y, Wang L, Hu X, Liu B, Wei Z, Yang S (2012) Highly efficient removal of tannic acid from aqueous solution by chitosan-coated attapulgite. Chem Eng J 181–182:300–306

    Article  CAS  Google Scholar 

  29. Yang J, Du J, Li X, Liu Y, Jiang C, Qi W (2019) Highly hydrophilic TiO2 nanotubes network by alkaline hydrothermal method for photocatalysis degradation of methyl orange. Nanomaterials (Basel) 9(4):526

    Article  CAS  Google Scholar 

  30. Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J Hazard Mater 178(1–3):517–521

    Article  CAS  PubMed  Google Scholar 

  31. Wang LS, Xiao MW, Huang XJ, Wu YD (2009) Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. J Hazard Mater 161(1):49–54

    Article  CAS  PubMed  Google Scholar 

  32. Deng L, Wang S, Liu D, Zhu B, Huang W, Wu S (2009) Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal Lett 129(3–4):513–518

    Article  CAS  Google Scholar 

  33. Prado AG (2009) Costa LL (2009) Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. J Hazard Mater 169(1–3):297–301

    Article  CAS  PubMed  Google Scholar 

  34. Ratanatawanate C, Bui A, Vu K, Balkus KJ (2011) Low-temperature synthesis of copper(II) sulfide quantum dot decorated TiO2 nanotubes and their photocatalytic properties. J Phys Chem C 115(14):6175–6180

    Article  CAS  Google Scholar 

  35. Tsai CY, Liu CW, Hsi HC, Lin KS, Lin YW, Lai LC (2019) Synthesis of Ag-modified TiO2 nanotube and its application in photocatalytic degradation of dyes and elemental mercury. J Chem Technol Biotechnol 94(10):3251–3262

    Article  CAS  Google Scholar 

  36. Lim YC, Siti AS, Nur Amiera P, Devagi K, Lim YP (2017) Electrochemical deposition of copper decorated titania nanotubes and its visible light photocatalytic performance. AIP Conf Proc 1880:070002

    Article  CAS  Google Scholar 

  37. Li Y, Zhai Y, Zhang P, Wang X, Cui H, Li J (2019) Synthesis of titania coated magnetic activated carbon for effective photodegradation of tannic acid in aqueous solution. Colloids Surf A 563:141–147

    Article  CAS  Google Scholar 

  38. Ameur N, Ferouani G, Belkadi Z, Bachir R, Calvino JJ, Hakkoum A (2019) A novel approach for the preparation of silver nanoparticles supported on titanate nanotubes and bentonite-application in the synthesis of heterocyclic compound derivatives. Mater Res Express 6(12):125051

    Article  CAS  Google Scholar 

  39. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  40. Ilunga AK, Mamba BB, Nkambule TTI (2021) Methyl orange degradation enhanced by hydrogen spillover onto platinum nanocatalyst surface. Appl Organomet Chem 35(1):6050

    Article  CAS  Google Scholar 

  41. Naqvi FK, Beg S, Anwar K (2020) Synthesis of visible light active copper, iron co-doped BiVO4 photocatalyst for the degradation of phenol. Reac Kinet Mech Cat 131(1):409–422

    Article  CAS  Google Scholar 

  42. Arunadevi R, Kavitha B, Rajarajan M, Suganthi A, Jeyamurugan A (2018) Investigation of the drastic improvement of photocatalytic degradation of Congo red by monoclinic Cd, Ba-CuO nanoparticles and its antimicrobial activities. Surf Interfaces 10:32–44

    Article  CAS  Google Scholar 

  43. Brahimi FT, Belkhadem F, Trari B, Othman A (2020) Diazole and triazole derivatives of castor oil extract: synthesis, hypoglycemic effect, antioxidant potential and antimicrobial activity. Grasas Aceites 71(4):378

    Article  CAS  Google Scholar 

  44. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8(1):37–45

    Article  CAS  Google Scholar 

  45. Fandi Z, Ameur N, Brahimi FT, Bedrane S, Bachir R (2020) Photocatalytic and corrosion inhibitor performances of CeO2 nanoparticles decorated by noble metals: Au, Ag, Pt. J Environ Chem Eng 8(5):104346

    Article  CAS  Google Scholar 

  46. Yadav DK, Quraishi MA (2012) Application of some condensed uracils as corrosion inhibitors for mild steel: gravimetric, electrochemical, surface morphological, UV–Visible, and theoretical investigations. Ind Eng Chem Res 51(46):14966–14979

    Article  CAS  Google Scholar 

  47. Yaro AS, Khadom AA, Idan MA (2014) Galvanic corrosion inhibition behavior of coupled copper-steel alloys in cooling water system. J Environ Chem Eng 2(4):2120–2128

    Article  CAS  Google Scholar 

  48. Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S (2021) Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J Environ Chem Eng 9:104584

    Article  CAS  Google Scholar 

  49. Ferouani G, Ameur N, Bachir R (2019) Preparation and characterization of supported bimetallic gold–iron nanoparticles, and its potential for heterogeneous catalysis. Res Chem Intermed 46:1373

    Article  CAS  Google Scholar 

  50. Ameur N, Bachir R, Bedrane S, Choukchou-Braham A (2017) A green route to produce adipic acid on TiO2–Fe2O3 nanocomposites. J Chin Chem Soc 64(9):1096–1103

    Article  CAS  Google Scholar 

  51. Ameur N, Bachir R, Bedrane S, Choukchou-Braham A (2017) Promotional effect of iron on the activity of TiO2 in the production of adipic acid. Ann de Chim-Sci des Mater 64(9):1096–1103

    CAS  Google Scholar 

  52. Xiao F-X (2012) Construction of highly ordered ZnO–TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl Mater Interfaces 4(12):7055–7063

    Article  CAS  PubMed  Google Scholar 

  53. Chenari HM, Riasvand L, Khalili S (2019) The synthesis condition and characterization of thermally treated CeO2 and ZnO CeO2 composite fibers. Ceram Int 45(11):14223–14228

    Article  CAS  Google Scholar 

  54. Ahmed MA, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloy Compd 553:19–29

    Article  CAS  Google Scholar 

  55. El-Korso S, Bedrane S, Choukchou-Braham A, Bachir R (2016) Investigation of the effect of VOx/ZrO2 structure on the catalytic activity in cyclohexene epoxidation. RSC Adv 6:110375–110383

    Article  CAS  Google Scholar 

  56. Reddy CV, Babu B, Reddy IN, Shim J (2018) Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram Int 44(6):6940–6948

    Article  CAS  Google Scholar 

  57. Bechambi O, Jlaiel L, Najjar W, Sayadi S (2016) Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: evolution of kinetics, toxicity and photodegradation mechanism. Mater Chem Phys 173:95–105

    Article  CAS  Google Scholar 

  58. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  59. Gao T, Fjellvåg H, Norby P (2009) Crystal structures of titanate nanotubes: a Raman scattering study. Inorg Chem 48(4):1423–1432

    Article  CAS  PubMed  Google Scholar 

  60. Kim S-J, Yun Y-U, Oh H-J, Hong SH, Roberts CA, Routray K (2010) Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy. J Phys Chem Lett 1(1):130–135

    Article  CAS  Google Scholar 

  61. Naumenko A, Gnatiuk I, Smirnova N, Eremenko A (2012) Characterization of sol–gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films 520(14):4541–4546

    Article  CAS  Google Scholar 

  62. Umek P, Korosec RC, Jancar B, Dominko R, Arcon D (2007) The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability. J Nanosci Nanotechnol 7(10):3502–3508

    Article  CAS  PubMed  Google Scholar 

  63. Park H, Goto T, Cho S et al (2020) Effects of annealing temperature on the crystal structure, morphology, and optical properties of peroxo-titanate nanotubes prepared by peroxo-titanium complex ion. Nanomaterials 10(7):1331

    Article  CAS  PubMed Central  Google Scholar 

  64. Tang Z-R, Zhang Y, Xu Y-J (2011) A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Adv 1(9):1772–1777

    Article  CAS  Google Scholar 

  65. Liu J, Yang R, Li S (2006) Preparation and characterization of the TiO2-V2O5 photocatalyst with visible-light activity. Rare Met 25(6):636–642

    Article  CAS  Google Scholar 

  66. Pashai Gatabi M, Milani Moghaddam H, Ghorbani M (2016) Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. J Mol Liq 216:117–125

    Article  CAS  Google Scholar 

  67. Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124(3–4):133–148

    Article  CAS  Google Scholar 

  68. Ge M, Guo C, Zhu X, Ma L, Han Z, Hu W (2009) Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Front Environ Sci Eng China 3(3):271–280

    Article  CAS  Google Scholar 

  69. Qu W, Yuan T, Yin G, Xu S, Zhang Q, Su H (2019) Effect of properties of activated carbon on malachite green adsorption. Fuel 249:45–53

    Article  CAS  Google Scholar 

  70. An J-H, Dultz S (2007) Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl Clay Sci 36(4):256–264

    Article  CAS  Google Scholar 

  71. Chencheng S, Bowen X, Yang P, Hao C (2017) Adsorption removal of tannic acid from aqueous solution by polyaniline: analysis of operating parameters and mechanism. J Colloid Interface Sci 487:175–181

    Article  CAS  Google Scholar 

  72. Kiwaan HA, Atwee TM, Azab EA, El-Bindary AA (2020) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J Mol Struct 1200:127115

    Article  CAS  Google Scholar 

  73. Ameur N, Fandi Z, Taieb-Brahimi F, Ferouani G, Bedrane S, Bachir R (2021) A novel approach of ceria nanotubes and plasmonic metal-doped ceria nanotubes application: anticorrosion and photodegradation potential. Appl Phys A 127(3):162

    Article  CAS  Google Scholar 

  74. Wantala K, Tipayarom D, Laokiat L, Grisdanurak N (2009) Sonophotocatalytic activity of methyl orange over Fe(III)/TiO2. React Kinet Catal Lett 97(2):249–254

    Article  CAS  Google Scholar 

  75. Karthik K, Nikolova MP, Phuruangrat A, Pushpa S, Revathi V, Subbulakshmi M (2020) Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater Res Innov 24(4):229–234

    Article  CAS  Google Scholar 

  76. Saleh R, Zaki AH, El-Ela FIA, Farghali AA, Taha M, Mahmoud R (2021) Consecutive removal of heavy metals and dyes by a fascinating method using titanate nanotubes. J Environ Chem Eng 9(1):104726

    Article  CAS  Google Scholar 

  77. Rodríguez-González V, Domínguez-Espíndola RB, Casas-Flores S, Patrón-Soberano OA, Camposeco-Solis R, Lee SW (2016) Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of botrytis cinerea isolated from tomato infection. ACS Appl Mater Interfaces 8(46):31625–31637

    Article  PubMed  CAS  Google Scholar 

  78. Sudheer QMA (2014) 2-Amino-3,5-dicarbonitrile-6-thio-pyridines: new and effective corrosion inhibitors for mild steel in 1 M HCl. Ind Eng Chem Res 53(8):2851–2859

    Article  CAS  Google Scholar 

  79. Quraishi MA, Ahamad I, Singh AK, Shukla SK, Lal B, Singh V (2008) N-(piperidinomethyl)-3-[(pyridylidene)amino]isatin: a new and effective acid corrosion inhibitor for mild steel. Mater Chem Phys 112(3):1035–1039

    Article  CAS  Google Scholar 

  80. Dutta A, Saha SK, Adhikari U, Banerjee P, Sukul D (2017) Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1M HCl solution: a combined experimental and theoretical approach. Corros Sci 123:256–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research group program under Grant Number RGP. 2/203/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawal Ameur.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 3850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouayed, Ma., Ameur, N., Taieb-Brahimi, F. et al. Investigation of novel titanate nanotubes modified with Ce, Fe, Zn and Zr for efficient dye degradation performance, inhibition of bacterial and fungal growth and anticorrosion activity in acid medium. Reac Kinet Mech Cat 134, 517–537 (2021). https://doi.org/10.1007/s11144-021-02068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02068-8

Keywords

Navigation