Skip to main content
Log in

Experimental analysis of biodiesel synthesis from palm kernel oil: empirical model and surface response variables

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work studied the transesterification reaction of palm kernel oil to produce Biodiesel FAME, using as catalyst KOH incorporated as a potassium methoxide intermediate. The catalytic tests were performed modifying representative variables such as reaction temperature (°C), methanol/oil molar ratio, and catalyst content (%KOH). The experimental data were adjusted to a linear empirical model, finding that the best experimental condition was observed at 50 °C with a methanol/oil ratio of 5.5 and a% KOH of 0.8. Finally, the FAME was characterized by FTIR spectroscopy, gas chromatography, and ASTM quality control techniques for analysis of cold properties, transport properties, and combustion properties. The reaction rate was determined and a reaction mechanism was proposed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. González AR, Asencios YJO, Assaf EM, Assaf JM (2013) Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors. Appl Surf Sci 280:876–887. https://doi.org/10.1016/j.apsusc.2013.05.082

    Article  CAS  Google Scholar 

  2. Mayorga MA, Cadavid JG, Martínez J et al (2019) Evaluation of zeolite-based catalyst supports for the production of biokerosene by hydrotreating of oils. Chem Eng Trans. https://doi.org/10.3303/CET1974003

    Article  Google Scholar 

  3. Ahmad M, Rashid S, Khan MA et al (2009) Optimization of base catalyzed transesterification of peanut oil biodiesel. Afr J Biotechnol. https://doi.org/10.5897/AJB2009.000-9076

    Article  Google Scholar 

  4. Arumugam A, Ponnusami V (2017) Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon. https://doi.org/10.1016/j.heliyon.2017.e00486

    Article  PubMed  Google Scholar 

  5. Adepoju TF, Rasheed B, Olatunji OM et al (2018) Modeling and optimization of lucky nut biodiesel production from lucky nut seed by pearl spar catalysed transesterification. Heliyon. https://doi.org/10.1016/j.heliyon.2018.e00798

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kadi MA, Akkouche N, Awad S et al (2019) Kinetic study of transesterification using particle swarm optimization method. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02146

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rathore Y, Ramchandani D, Pandey RK (2019) Experimental investigation of performance characteristics of compression-ignition engine with biodiesel blends of Jatropha oil & coconut oil at fixed compression ratio. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02717

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jitputti J, Kitiyanan B, Rangsunvigit P et al (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem Eng J. https://doi.org/10.1016/j.cej.2005.09.025

    Article  Google Scholar 

  9. Mayorga MA et al (2020) Bio-hydrogen production using metallic catalysts. Rev Mex Ing Quím 19:1103. https://doi.org/10.24275/rmiq/Cat652

    Article  CAS  Google Scholar 

  10. Betancourt M, Alejandro M, Estrada C, Guillermo J, Paez B, Alejandro J, Santamaría L, Andrés C, Gómez L et al (2019) Use of biofuels in the aeronautical industry: Colombian air forcé case. Tecciencia. https://doi.org/10.18180/tecciencia.2019.26.7

    Article  Google Scholar 

  11. Lapuerta M, Canoira L (2016) Chapter 4 - The suitability of fatty acid methyl esters (FAME) as blending agents in jet A-1. In: Chuck CJBT-B for A (ed) Biofuels for aviation. Academic Press, pp 47–84. https://www.sciencedirect.com/science/article/pii/B9780128045688000044

  12. Bart JCJ, Palmeri N, Cavallaro S (2010) 7—Transesterification processes for biodiesel production from oils and fats. In: Bart JCJ, Palmeri N, Cavallaro SBT (eds) Woodhead Publishing Series in Energy. Woodhead Publishing, Cambridge, pp 285–321

    Google Scholar 

  13. Yusuff AS, Bello KA (2019) Synthesis of fatty acid methyl ester via transesterification of waste frying oil by a zinc-modified pumice catalyst: taguchi approach to parametric optimization. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-019-01680-z

    Article  Google Scholar 

  14. Kumar U, Gupta P (2020) Modeling and optimization of novel biodiesel production from non-edible oil with musa balbisiana root using hybrid response surface methodology along with african buffalo optimization. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-020-01807-7

    Article  Google Scholar 

  15. Afsharizadeh M, Mohsennia M (2019) Catalytic synthesis of biodiesel from waste cooking oil and corn oil over zirconia-based metal oxide nanocatalysts. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-019-01622-9

    Article  Google Scholar 

  16. Llamas A, Lapuerta M, Al-Lal AM, Canoira L (2013) Oxygen extended sooting index of FAME blends with aviation kerosene. Energy Fuels. https://doi.org/10.1021/ef401623t

    Article  Google Scholar 

  17. Chuck CJ, Donnelly J (2014) The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl Energy. https://doi.org/10.1016/j.apenergy.2013.12.019

    Article  Google Scholar 

  18. Cremonez PA, Feroldi M, De Araújo AV et al (2015) Biofuels in Brazilian aviation: current scenario and prospects. Renew Sustain Energy Rev 43:1063

    Article  Google Scholar 

  19. Llamas A, García-Martínez MJ, Al-Lal AM et al (2012) Biokerosene from coconut and palm kernel oils: production and properties of their blends with fossil kerosene. Fuel. https://doi.org/10.1016/j.fuel.2012.06.108

    Article  Google Scholar 

  20. da Silva JQ, Santos DQ, Fabris JD et al (2020) Light biodiesel from macaúba and palm kernel: properties of their blends with fossil kerosene in the perspective of an alternative aviation fuel. Renew Energy. https://doi.org/10.1016/j.renene.2019.11.035

    Article  Google Scholar 

  21. Yang J, Xin Z, Sophia) He Q et al (2019) An overview on performance characteristics of bio-jet fuels. Fuel 237:916

    Article  CAS  Google Scholar 

  22. Rupilius W, Ahmad S (2007) Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.200600291

    Article  Google Scholar 

  23. PROEXPORT, “Plan Sectorial. Biocombustibles,” 2011.

  24. R. de C. Superintendencia de Industría y Comercio, “AGROINDUSTRIA DE LA PALMA AFRICANA: DIAGNÓSTICO DE LIBRE COMPETENCIA I.,” 2006.

  25. Pantzaris TP, Ahmad J (2000) Properties and utilization of palm kernel oil. Palm Oil developments. http://palmoilis.mpob.gov.my/POD/index.php/2020/03/28/properties-and-utilization-of-palm-kernel-oil/

  26. CENIPALMA, Tecnologías para la obtención de oleoquímicos provenientes del aceite de palmiste. 2008.

  27. Cuéllar S. MC (2000) Perspectivas de la oleoquímica en Colombia. Revista Palmas 21:364–370. https://publicaciones.fedepalma.org/index.php/palmas/article/view/853

  28. de Vries RJ (1984) Utilization of Malaysian palm oil and palm kernel oil for fatty acids and derivatives. J Am Oil Chem Soc. https://doi.org/10.1007/BF02678803

    Article  Google Scholar 

  29. Chiaramonti D, Prussi M, Buffi M, Tacconi D (2014) Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels. Appl Energy. https://doi.org/10.1016/j.apenergy.2014.08.065

    Article  Google Scholar 

  30. Delgado Rodríguez WE, Meléndez Rodríguez GA, Mayorga Betancourt MA, Bonilla Páez JA, López Gómez M (2019) Life cycle analysis of biodiesel blends for aviation. Tecciencia. https://doi.org/10.18180/tecciencia.2019.27.6

    Article  Google Scholar 

  31. Why ESK, Ong HC, Lee HV et al (2019) Renewable aviation fuel by advanced hydroprocessing of biomass: challenges and perspective. Energy Convers Manag 199:112015

    Article  CAS  Google Scholar 

  32. Itthibenchapong V, Srifa A, Kaewmeesri R et al (2017) Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3catalysts. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2016.12.034

    Article  Google Scholar 

  33. Hong TD, Soerawidjaja TH, Reksowardojo IK et al (2013) A study on developing aviation biofuel for the tropics: production process—experimental and theoretical evaluation of their blends with fossil kerosene. Chem Eng Process. https://doi.org/10.1016/j.cep.2013.09.013

    Article  Google Scholar 

  34. De Sousa FP, Cardoso CC, Pasa VMD (2016) Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2015.10.024

    Article  Google Scholar 

  35. Sousa FP, Silva LN, de Rezende DB et al (2018) Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel. https://doi.org/10.1016/j.fuel.2018.03.020

    Article  Google Scholar 

  36. Dujjanutat P, Kaewkannetra P (2020) Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/palm kernel oils. Renew Energy. https://doi.org/10.1016/j.renene.2019.09.015

    Article  Google Scholar 

  37. Berenblyum AS, Danyushevsky VY, Kuznetsov PS et al (2016) Catalytic methods for the manufacturing of high-production volume chemicals from vegetable oils and fats (review). Petrol Chem 56:663

    Article  CAS  Google Scholar 

  38. Cornelius JA (1977) Palm oil and palm kernel oil. Prog Chem Fats Other Lipids 15:5–27. https://doi.org/10.1016/0079-6832(77)90005-2

    Article  CAS  PubMed  Google Scholar 

  39. Moraes ES, Reis GF, Cruz J et al (2020) Thermodynamics study of biokerosene from coconut and palm kernel oils and JP-8 aircraft fuels in the gas phase by the DFT method. J Mol Model. https://doi.org/10.1007/s00894-020-4327-6

    Article  PubMed  Google Scholar 

  40. Talero G, Bayona-Roa C, Munoz G et al (2019) Experimental methodology and facility for the J69-engine performance and emissions evaluation using jet al and biodiesel blends. Energies. https://doi.org/10.3390/en12234530

    Article  Google Scholar 

  41. Alamu OJ, Waheed MA, Jekayinfa SO (2007) Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield. Energy Sustain Dev. https://doi.org/10.1016/S0973-0826(08)60579-7

    Article  Google Scholar 

  42. Alamu OJ, Waheed MA, Jekayinfa SO (2008) Effect of ethanol-palm kernel oil ratio on alkali-catalyzed biodiesel yield. Fuel. https://doi.org/10.1016/j.fuel.2007.08.011

    Article  Google Scholar 

  43. Shahbazi MR, Khoshandam B, Nasiri M, Ghazvini M (2012) Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil—characterization, kinetics model. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2012.01.009

    Article  Google Scholar 

  44. Mayorga MA, Lopez M, Lopez C, et al (2020) Production of aviation biofuel from palm kernel oil. Chem Eng Trans 80:319–324 SE-Research Articles. https://doi.org/10.3303/CET2080054

  45. Alvarez Serafini MS, Reinoso DM, Tonetto GM (2018) Response surface study and kinetic modelling of biodiesel synthesis catalyzed by zinc stearate. Energy. https://doi.org/10.1016/j.energy.2018.08.182

    Article  Google Scholar 

  46. Franceschini G, Macchietto S (2005) A numerical experiment design study on a biodiesel production process. Comput Aided Chem Eng. https://doi.org/10.1016/S1570-7946(05)80180-4

    Article  Google Scholar 

  47. Franceschini G, Macchietto S (2007) Validation of a model for biodiesel production through model-based experiment design. Ind Eng Chem Res. https://doi.org/10.1021/ie060758c

    Article  Google Scholar 

  48. Narváez PC, Rincón SM, Sánchez FJ (2007) Kinetics of palm oil methanolysis. JAOCS, J Am Oil Chem Soc. https://doi.org/10.1007/s11746-007-1120-y

    Article  Google Scholar 

  49. Noriega MA, Narváez PC, Heinz C (2014) Kinetics of Jatropha oil methanolysis. Fuel. https://doi.org/10.1016/j.fuel.2014.05.094

    Article  Google Scholar 

  50. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel. https://doi.org/10.1016/j.fuel.2008.07.008

    Article  Google Scholar 

  51. Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. JAOCS, J Am Oil Chem Soc. https://doi.org/10.1007/s11746-997-0254-2

    Article  Google Scholar 

  52. Yunus R, Syam AM (2011) Kinetics of the transesterification of Jatropha curcas triglyceride with an alcohol in the presence of an alkaline catalyst. Int J Sustain Energy. https://doi.org/10.1080/14786451.2011.628749

    Article  Google Scholar 

  53. Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Petrol 25:21–31. https://doi.org/10.1016/j.ejpe.2015.06.007

    Article  Google Scholar 

  54. Narváez PC, Noriega MA, Cadavid JG (2015) Kinetics of palm oil ethanolysis. Energy. https://doi.org/10.1016/j.energy.2015.02.029

    Article  Google Scholar 

  55. Celante D, Schenkel JVD, de Castilhos F (2018) Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel. https://doi.org/10.1016/j.fuel.2017.10.040

    Article  Google Scholar 

  56. Foo KY, Hameed BH (2013) Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Biores Technol. https://doi.org/10.1016/j.biortech.2012.11.146

    Article  Google Scholar 

  57. Serafini MSA, Tonetto GM (2019) Synthesis of fatty acid methyl esters from pomace oil catalyzed by zinc stearate: a kinetic study of the transesterification and esterification reactions. Catalysts. https://doi.org/10.3390/catal9120978

    Article  Google Scholar 

  58. Bong A, Kor N, Ndifon P, Sani Y (2018) Synthesis and characterisation of biodiesel from cameroon palm kernel seed oil. Asian J Biotechnol Bioresour Technol. https://doi.org/10.9734/ajb2t/2018/40200

    Article  Google Scholar 

  59. Hariram V, Dinesh KM (2016) Analyzing the fatty acid methyl esters profile of palm kernel biodiesel using GC/MS, NMR and FTIR techniques. J Chem Pharm Sci. https://www.semanticscholar.org/paper/Analyzing-the-Fatty-Acid-Methyl-Esters-Profile-of-Hariram-Kumar/bcfc57c31b449eda12d63fff877084713f4043dd

  60. Akhabue CE, Ogogo JA (2018) Modelling and optimization of transesterification of palm kernel oil catalysed by calcium oxide derived from hen eggshell wastes. Ife J Sci. https://doi.org/10.4314/ijs.v20i1.13

    Article  Google Scholar 

  61. Gonzalez Caranton AR, da Silva Pinto JCC, Stavale F et al (2020) Statistical analysis of the catalytic synthesis of Vinyl acetate over Pd-Cu/ZrO2 nanostructured based catalysts. Catal Today. https://doi.org/10.1016/j.cattod.2018.10.034

    Article  Google Scholar 

  62. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248

    Article  CAS  Google Scholar 

  63. Issariyakul T, Dalai AK (2012) Comparative kinetics of transesterification for biodiesel production from palm oil and mustard oil. Can J Chem Eng. https://doi.org/10.1002/cjce.20679

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Administrative Department of Science, Technology and Innovation COLCIENCIAS, the Colombian Air Force and ECCI University through the project "Use of Biokerosene as Fuel in Aircraft of the FAC".

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ARGC, MAMB; Methodology: ARGC, MAMB; Formal analysis and investigation: ARGC, MAMB; Writing—original draft preparation: ARGC; Writing—review and editing: ARGC, MAMB; Funding acquisition: MLG, CALS, Resources: MAG, Supervision: ARGC

Corresponding author

Correspondence to Alberth Renne Gonzalez Caranton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorga Betancourt, M.A., López Santamaria, C.A., López Gómez, M. et al. Experimental analysis of biodiesel synthesis from palm kernel oil: empirical model and surface response variables. Reac Kinet Mech Cat 131, 297–317 (2020). https://doi.org/10.1007/s11144-020-01860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01860-2

Keywords

Navigation