Skip to main content
Log in

Selective production of hydrogen by acetone steam reforming over Ni–Co/olivine catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Acetone steam reforming was carried out over olivine supported cobalt and nickel catalysts for producing hydrogen in high selectivity. The wet impregnation process was used for the preparation of the catalyst. The chemical and physical properties of synthesized catalysts were determined by BET, H2-TPR, SEM (coupled with EDS) and XRD. The reforming activity was examined at atmospheric pressure in a tubular reactor. The olivine supported bimetallic (Ni–Co) catalysts exhibited significant acetone steam reforming activity with around 99% conversion of acetone. Around 80% selectivity to hydrogen was obtained over bimetallic 5% (Ni25Co75)/olivine. A LHHW type kinetic model was established for the reforming process consisting of complex reaction networks. The activation energy for the LHHW model was found to be 63 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anzelmo B, Wilcox J, Liguori S (2017) Natural gas steam reforming reaction at low temperature and pressure conditions for hydrogen production via Pd/PSS membrane reactor. J Membr Sci 522:343–350

    Article  CAS  Google Scholar 

  2. Zhu L, Xie N, Jiang P, Li L, Chen H (2016) Double-stage chemical looping combustion combined with sorption enhanced natural gas steam reforming process for hydrogen and power cogeneration: thermodynamic investigation. Chem Eng Res Des 114:247–257

    Article  CAS  Google Scholar 

  3. Kechagiopoulos PN, Angeli SD, Lemonidou AA (2017) Low temperature steam reforming of methane: a combined isotopic and microkinetic study. Appl Catal B 205:238–253

    Article  CAS  Google Scholar 

  4. Ali S, Al-Marri MJ, Abdelmoneim AG, Kumar A, Khader MM (2016) Catalytic evaluation of nickel nanoparticles in methane steam reforming. Int J Hydrogen Energy 41:22876–22885

    Article  CAS  Google Scholar 

  5. Chou YS, Huang MH, Hsu NY, Jeng KT, Lee RY, Yen SC (2016) Development of ring-shape supported catalyst for steam reforming of natural gas in small SOFC systems. Int J Hydrogen Energy 41:12953–12961

    Article  CAS  Google Scholar 

  6. Alhamdani YA, Hassim MH, Ng RTL, Hurme M (2016) The estimation of fugitive gas emissions from hydrogen production by natural gas steam reforming. Int J Hydrogen Energy 42:9342–9351

    Article  CAS  Google Scholar 

  7. Fan J, Zhu L, Jiang P, Li L, Liu H (2016) Comparative exergy analysis of chemical looping combustion thermally coupled and conventional steam methane reforming for hydrogen production. J Clean Prod 131:247–258

    Article  CAS  Google Scholar 

  8. Gangadharan P, Kanchi KC, Lou HH (2012) Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem Eng Res Des 90:1956–1968

    Article  CAS  Google Scholar 

  9. Azenha CSR, Pedrero CM, Queiros S, Concepcion P, Mendes A (2017) Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming. Appl Catal B 203:400–407

    Article  CAS  Google Scholar 

  10. Liu D, Men Y, Wang J, Kolb G, Liu X, Wang Y, Sun Q (2016) Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming. Int J Hydrogen Energy 41:21990–21999

    Article  CAS  Google Scholar 

  11. Cao L, Lu M, Li G, Zhang S (2018) Hydrogen production from methanol steam reforming catalysed by Fe modified Cu supported on attapulgite clay. Reac Kinet Mech Cat 1:11–22. https://doi.org/10.1007/s11144-018-1493-y

    Article  CAS  Google Scholar 

  12. Bej B, Pradhan NC, Neogi S (2017) Production of hydrogen by steam reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst. Catal Today 237:80–88

    Article  CAS  Google Scholar 

  13. Bepari S, Basu S, Pradhan NC, Dalai AK (2017) Steam reforming of ethanol over cerium-promoted Ni-Mg-Al hydrotalcite catalysts. Catal Today 291:47–57

    Article  CAS  Google Scholar 

  14. Bilal M, Jackson SD (2017) Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: the effect of impurities on selectivity and catalyst deactivation. Appl Catal A 529:98–107

    Article  CAS  Google Scholar 

  15. Song JH, Han SJ, Yoo J, Park S, Kim DH, Song IK (2016) Hydrogen production by steam reforming of ethanol overNi-Sr-Al2O3-ZrO2 aerogel catalyst. J Mol Catal A 424:342–350

    Article  CAS  Google Scholar 

  16. Bepari S, Pradhan NC, Dalai AK (2017) Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst. Catal Today 291:36–46

    Article  CAS  Google Scholar 

  17. Menor M, Sayas S, Chica A (2017) Natural sepiolite promoted with Ni as new and efficient catalyst for the sustainable production of hydrogen by steam reforming of the biodiesel by-products glycerol. Fuel 193:351–358

    Article  CAS  Google Scholar 

  18. Demsash HD, Mohan R (2016) Steam reforming of glycerol to hydrogen over ceria promoted nickel-alumina catalysts. Int J Hydrogen Energy 41:22732–22742

    Article  CAS  Google Scholar 

  19. Cichy M, Dobosz J, Borowiecki T, Zawadzki M (2017) Glycerol steam reforming over calcium deficient hydroxyapatite supported nickel catalysts. Reac Kinet Mech Cat 122:69–83

    Article  CAS  Google Scholar 

  20. Higo T, Saito H, Ogo S, Sugiura Y, Sekine Y (2017) Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene. Appl Catal A 530:125–131

    Article  CAS  Google Scholar 

  21. Rached JA, Hayek CE, Dahdah E, Gennequin C, Aouad S, Tidahy HL, Estephane J, Nsouli B, Aboukaïs A, Aad EA (2017) Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production. Int J Hydrogen Energy 42:12829–12840

    Article  CAS  Google Scholar 

  22. Hu X, Zhang L, Lu G (2016) Steam reforming of acetic acid over Cu-Zn-Co catalyst for hydrogen generation: synergistic effects of the metal species. Int J Hydrogen Energy 41:13960–13969

    Article  CAS  Google Scholar 

  23. Barman S, Pradhan NC, Acharya A, Pramanik P (2006) Kinetics of reductive isopropylation of benzene with acetone over nano-copper chromite-loaded H-mordenite. Ind Eng Chem Res 45:3481–3487

    Article  CAS  Google Scholar 

  24. Shutkina OV, Ponomareva OA, Kots PA, Ivanova II (2013) Selective hydrogenation of acetone in the presence of benzene. Catal Today 218:30–34

    Article  CAS  Google Scholar 

  25. Sun J, Mei D, Karim AM, Datye AK, Wang Y (2013) Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates. Chem Cat Chem 5:1299–1303

    CAS  Google Scholar 

  26. Navarro RM, Guil-Lopez R, Ismail AA, Al-Sayari SA, Fierro JLG (2015) Ni- and PtNi-catalysts supported on Al2O3 for acetone steam reforming: effect of the modification of support with Ce, La and Mg. Catal Today 242:60–70

    Article  CAS  Google Scholar 

  27. Braga AH, Sodre ER, Santos JBO, De Paula Marques CM, Bueno JMC (2016) Steam reforming of acetone over Ni- and Co-based catalysts: effect of the composition of reactants and catalysts on reaction pathways. Appl Catal B 195:16–28

    Article  CAS  Google Scholar 

  28. Guil-Lopez R, Navarro RM, Ismail AA, Al-Sayari SA, Fierro JLG (2015) Influence of Ni environment on the reactivity of Ni-Mg-Al catalysts for the acetone steam reforming reaction. Int J Hydrogen Energy 40:5289–5296

    Article  CAS  Google Scholar 

  29. Hu X, Zhang L, Lu G (2012) Pruning of the surface species on Ni/Al2O3 catalyst to selective production of hydrogen via acetone and acetic acid steam reforming. Appl Catal A 427:49–57

    Article  CAS  Google Scholar 

  30. Michel R, Łamacz A, Krzton A, Djéga-Mariadassou G, Burg P, Courson C, Gruber R (2013) Steam reforming of a-methylnaphthalene as a model tar compound over olivine and olivine supported nickel. Fuel 109:653–660

    Article  CAS  Google Scholar 

  31. Constantinou DA, Fierro JLG, Efstathiou AM (2010) A comparative study of the steam reforming of phenol towards H2 production over natural calcite, dolomite and olivine materials. Appl Catal B 95:255–269

    Article  CAS  Google Scholar 

  32. Virginie M, Courson C, Kiennemann A (2010) Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst. C R Chim 13:1319–1325

    Article  CAS  Google Scholar 

  33. Yang X, Xu S, Xu H, Liu X, Liu C (2010) Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catal Commun 11:383–386

    Article  CAS  Google Scholar 

  34. Zhang R, Wang Y, Brown RC (2007) Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energ Convers Manag 48:68–77

    Article  CAS  Google Scholar 

  35. Gou Y, Liang X, Chen B (2013) Porous Ni–Co bimetal oxides nanosheets and catalytic properties for CO oxidation. J Alloys Compd 574:181–187

    Article  CAS  Google Scholar 

  36. Sawierczynski D, Courson C, Bedel L, Kiennemann A, Vilminot S (2006) Oxidation reduction behavior of iron-bearing olivines (FexMg1-x)2SiO4 used as catalysts for biomass gasification. Chem Mater 18:897–905

    Article  CAS  Google Scholar 

  37. Wang G, Xu S, Jiang L, Wang C (2016) Nickel supported on iron-bearing olivine for CO2 methanation. Int J Hydrogen Energy 41:12910–12919

    Article  CAS  Google Scholar 

  38. Virginie M, Courson C, Niznansky D, Chaoui N, Kiennemann A (2010) Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Appl Catal B 101:90–100

    Article  CAS  Google Scholar 

  39. Courson C, Makaga E, Petit C, Kiennemann A (2000) Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal Today 63:427–437

    Article  CAS  Google Scholar 

  40. Lovon ASP, Lovon-Quintana JJ, Almerindo GI, Valenca GP, Bernardi MIB, Araujo VD, Rodrigues TS, Robles-dutenhefner PA, Fajardo HV (2012) Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production. J Power Sources 216:281–289

    Article  CAS  Google Scholar 

  41. Xu W, Liu Z, Johnston-Peck AC, Senanayake SD, Zhou G, Stacchiola D, Stach EA, Rodriguez JA (2013) Steam reforming of ethanol on Ni/CeO2: reaction pathway and interaction between Ni and the CeO2 support. ACS Catal 3:975–984

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan C. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Pradhan, N.C. Selective production of hydrogen by acetone steam reforming over Ni–Co/olivine catalysts. Reac Kinet Mech Cat 127, 357–373 (2019). https://doi.org/10.1007/s11144-019-01542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01542-8

Keywords

Navigation