Skip to main content
Log in

Unified catalytic oxidation–adsorption desulfurization for aromatic sulfur compounds with cyclohexanone peroxide over Ti-HMS

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Three kinds of Ti-HMS zeolites have been synthesized by using different templates, and their catalytic performance was investigated in deep oxidation-adsorption desulfurization process. Various analysis techniques have been applied to investigate physical and chemical properties of the catalysts. Using cyclohexanone peroxide as an oxidant, the catalytic performance results show that Ti-HMS-12 exhibits highest desulfurization performance (99.9%) without solvents. Dibenzothiophene (DBT) was almost completely oxidized to the more polar DBT sulfone, which could be subsequently adsorbed on the Ti-HMS-12, achieving a unified processes of oxidative-adsorption desulfurization process. Furthermore, the catalyst was recycled for five runs with slight decreases in the catalytic performance and can be easily regenerated by methanol washing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iriarte V, Cruz-Reyes J, Del Valle M, Alonso G, Fuentes S, Paraguay-Delgado F, Romero-Rivera R (2017) React Kinet Mech Cat 121(2):593–605

    Article  CAS  Google Scholar 

  2. Varga Z, Szarvas T, Tétényi P, Hancsók J, Ollár T (2018) React Kinet Mech Cat 124(1):61–74

    Article  CAS  Google Scholar 

  3. Tian F, Shen Q, Fu Z, Wu Y, Jia C (2014) Fule Process Technol 128:176–182

    Article  CAS  Google Scholar 

  4. Ullah R, Zhang Z, Bai P, Wu P, Han D, Etim UJ, Yan Z (2016) Ind Eng Chem Res 55(13):3751–3758

    Article  CAS  Google Scholar 

  5. Kilbane JJ, Stark B (2016) World J Microb Biot 32(8):137

    Article  CAS  Google Scholar 

  6. Yao T, Yao S, Pan C, Dai X, Song H (2016) Energy Fuels 30(6):4740–4749

    Article  CAS  Google Scholar 

  7. Li C, Li D, Zou S, Li Z, Yin J, Wang A, Cui Y, Yao Z, Zhao Q (2013) Green Chem 15(10):2793–2799

    Article  CAS  Google Scholar 

  8. Alvarez-Amparán MA, Cedeño-Caero L, Cortes-Jácome MA, Toledo-Antonio JA (2017) React Kinet Mech Cat 122(2):869–885

    Article  CAS  Google Scholar 

  9. Wang G, Han Y, Wang F, Chu Y, Chen X (2015) React Kinet Mech Cat 115(2):679–690

    Article  CAS  Google Scholar 

  10. Li H, He L, Lu J, Zhu W, Xue J, Yan W, Yan Y (2015) Energy Fuels 23(3):1354–1357

    Article  CAS  Google Scholar 

  11. Zhou M, Meng W, Li Y, Wang Q, Li X, Zang S (2014) Energy Fuels 28(1):516–521

    Article  CAS  Google Scholar 

  12. Chen Y, Song H-Y, Lu Y-Z, Meng H, Li C-X, Lei Z-G, Chen B-H (2016) Ind Eng Chem Res 55(39):10394–10403

    Article  CAS  Google Scholar 

  13. Bazyari A, Khodadadi AA, Haghighat Mamaghani A, Beheshtian J, Thompson LT, Mortazavi Y (2016) Appl Catal B 180:65–77

    Article  CAS  Google Scholar 

  14. Shen C, Wang YJ, Xu JH, Luo GS (2015) Chem Eng J 259:552–561

    Article  CAS  Google Scholar 

  15. Du S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) Chem Commun 52(16):3368–3371

    Article  CAS  Google Scholar 

  16. Yue D, Lei J, Peng Y, Li J, Du X (2018) Fuel 226:148–155

    Article  CAS  Google Scholar 

  17. Barker CM, Gleeson D, Kaltsoyannis N, Catlow CRA, Sankar G, Thomas JM (2002) Phys Chem Chem Phys 4(7):1228–1240

    Article  CAS  Google Scholar 

  18. Gawarecka A, Wróblewska A (2018) React Kinet Mech Cat 124(2):523–543

    Article  CAS  Google Scholar 

  19. Xiao J, Wang X, Fujii M, Yang Q, Song C (2013) AlChE J 59(5):1441–1445

    Article  CAS  Google Scholar 

  20. Zeng X, Xiao X, Li Y, Chen J, Wang H (2017) Appl Catal B 209:98–109

    Article  CAS  Google Scholar 

  21. Shi Y, Liu G, Zhang B, Zhang X (2016) Green Chem 18(19):5273–5279

    Article  CAS  Google Scholar 

  22. Chen S, Lu W, Yao Y, Chen H, Chen W (2014) React Kinet Mech Cat 111(2):535–547

    Article  CAS  Google Scholar 

  23. Wei S, He H, Cheng Y, Yang C, Zeng G, Kang L, Qian H, Zhu C (2017) Fuel 200:11–21

    Article  CAS  Google Scholar 

  24. Yang C, Zhao K, Cheng Y, Zeng G, Zhang M, Shao J, Lu L (2016) Sep Purif Technol 163:153–161

    Article  CAS  Google Scholar 

  25. Long Z, Yang C, Zeng G, Peng L, Dai C, He H (2014) Fuel 130:19–24

    Article  CAS  Google Scholar 

  26. Zhou X, Zhao C, Yang J, Zhang S (2007) Energy Fuels 21(1):7–10

    Article  CAS  Google Scholar 

  27. Hulea V, Fajula F, Bousquet J (2001) J Catal 198:179–186

    Article  CAS  Google Scholar 

  28. Wang Y, Li G, Wang X, Jin C (2007) Energy Fuels 21(3):1415–1419

    Article  CAS  Google Scholar 

  29. Jin C, Li G, Wang X, Zhao L, Wang Y, Sun D (2008) Top Catal 49(1):118–124

    Article  CAS  Google Scholar 

  30. Liu J, Ni X, Hu Y (2015) React Kinet Mech Cat 114(2):685–695

    Article  CAS  Google Scholar 

  31. Leng K, Li X, Ye G, Du Y, Sun Y, Xu W (2016) Catal Sci Technol 6(20):7615–7622

    Article  CAS  Google Scholar 

  32. And WL, Frei H (2002) J Am Chem Soc 124(31):9292

    Article  CAS  Google Scholar 

  33. Song H-Y, Li G, Wang X-S, Xu Y-J (2010) Catal Today 149(1–2):127–131

    Article  CAS  Google Scholar 

  34. Yang S-T, Jeong K-E, Jeong S-Y, Ahn W-S (2012) Mater Res Bull 47(12):4398–4402

    Article  CAS  Google Scholar 

  35. Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, Yang H (2018) Fuel Process Technol 177:81–88

    Article  CAS  Google Scholar 

  36. Zheng D, Zhu W, Xun S, Zhou M, Zhang M, Jiang W, Qin Y, Li H (2015) Fuel 159(6):446–453

    Article  CAS  Google Scholar 

  37. Xun S, Zhu W, Zheng D, Li H, Jiang W, Zhang M (2015) RSC Adv 5(54):43528–43536

    Article  CAS  Google Scholar 

  38. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232–1239

    Article  CAS  Google Scholar 

  39. Liu S, Zhao F, Sun H, Liu X, Cui B (2018) Appl Organomet Chem 32(2):e4082

    Article  CAS  Google Scholar 

  40. Panyaburapa W, Nanok T, Limtrakul J (2007) J Phys Chem C 111(8):3433–3441

    Article  CAS  Google Scholar 

  41. Wang H, Zhou R, Deng Y (2018) React Kinet Mech Cat 124(1):45–60

    Article  CAS  Google Scholar 

  42. Wang H, Deng YQ, Zhou R (2018) Theor Chem Acc 137(5):66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Training Program for Outstanding Young Teachers in Universities in Guangdong Province (Grant No. YQ2015116), and Maoming Public Service Platform for transformation upgrading and Technological Innovation of Petrochemical Industry (2016B020211002), the National Natural Science Foundation of China (Grant No. 21403038), the Natural Science Foundation of Guangdong Province (Grant No. 2015A030313892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlu Wang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zeng, X., Zhou, R. et al. Unified catalytic oxidation–adsorption desulfurization for aromatic sulfur compounds with cyclohexanone peroxide over Ti-HMS. Reac Kinet Mech Cat 126, 353–364 (2019). https://doi.org/10.1007/s11144-018-1520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1520-z

Keywords

Navigation