Skip to main content
Log in

Relationship between the catalytic activity and Mo–V surface species in bimetallic catalysts for the oxidative desulfurization of dibenzothiophenic compounds

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work shows the performance of MoOx–VOx based bimetallic catalysts tested on the oxidative desulfurization (ODS) process of refractory dibenzothiophenic compounds using H2O2 as an oxidant. The catalytic activity was related with the oxidation state of molybdenum and vanadium surface species and with the interaction of both metals. The prepared molybdenum–vanadium oxides supported on alumina were subjected to reduction treatments at different temperature to obtain molybdenum and vanadium species with different oxidation state. Catalysts were characterized by their textural properties, scanning electron microscopy–energy dispersive X-ray, X-ray diffraction, temperature programed reduction and X-ray photoelectron spectroscopy. The characterization results showed that metal interactions promote the generation of highly active tetrahedral molybdenum species and isolated vanadium species, which increase the ODS performance of Mo–V based catalysts compared with their respective monometallic catalysts. Also, it was observed that combination of Mo6+, Mo4+ and V4+ superficial species promoted the ODS catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–263

    Article  CAS  Google Scholar 

  2. Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631

    Article  CAS  Google Scholar 

  3. Srivastava VC (2012) An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv 2:759–783

    Article  Google Scholar 

  4. Secretary of the Environment MX (2016). http://www.sedema.df.gob.mx/sedema/. Accessed 28 Feb 2017

  5. Environmental Protection Agency USA (2016). https://www3.epa.gov/. Accessed 28 Feb 2017

  6. Official Website of the European Union (2016). http://europa.eu/index_en.htm. Accessed 28 Feb 2017

  7. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  CAS  Google Scholar 

  8. Ito E, Rob van Veen JA (2006) On novel processes for removing sulphur from refinery streams. Catal Today 116:446–460

    Article  CAS  Google Scholar 

  9. Ismagilov Z, Yashnik S, Kerzhentsev M, Parmon V, Bourane A, Al-Shahrani FM, Hajji AA, Koseoglu OR (2011) Oxidative desulfurization of hydrocarbon fuels. Catal Rev 53:199–255

    Article  CAS  Google Scholar 

  10. Kwang-Eun J, Tae-Wan K, Joo-Wan K, Ho-Jeong C, Chul-Ung K, Young-Kwon P, Soon-Yong J (2013) Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel. Korean J Chem Eng 30:509–517

    Article  Google Scholar 

  11. García-Gutiérrez JL, Lozano IP, Hernández-Pérez F, Laredo GC, Jimenez-Cruz F (2012) R&D in oxidative desulfurization of fuels technologies: from chemistry to patents. Recent Pat Chem Eng 3(5):174–196

    Google Scholar 

  12. Feng M (2010) Review on recent patents in sulfur removal from liquid fuels by oxidative desulfurization (ODS) process. Recent Pat Chem Eng 3:30–37

    Article  Google Scholar 

  13. Anisimov AV, Tarakanova AV (2009) Oxidative desulfurization of hydrocarbon raw materials. Russ J Gen Chem 79(6):1264–1273

    Article  CAS  Google Scholar 

  14. Qian EW (2008) Development of novel nonhydrogenation desulfurization process—oxidative desulfurization of distillate. J Jpn Pet Inst 51:14–31

    Article  CAS  Google Scholar 

  15. Alvarez-Amparán MA, Cedeño-Caero L (2017) MoOx–VOx based catalysts for the oxidative desulfurization of refractory compounds. Influence of MoOx–VOx interaction on the catalytic performance. Catal Today 282:133–139

    Article  Google Scholar 

  16. González-García O, Cedeño-Caero L (2009) V–Mo based catalysts for oxidative desulfurization of diesel fuel. Catal Today 148:42–48

    Article  Google Scholar 

  17. González-García O, Cedeño-Caero L (2010) V–Mo based catalysts for ODS of diesel fuel. Part II. Catalytic performance and stability after redox cycles. Catal Today 150:237–243

    Article  Google Scholar 

  18. Wan Azelee WAB, Rusmidah A, Abdul Aziz Abdul K, Wan NAWM (2012) Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel. Fuel Process Technol 101:78–84

    Article  Google Scholar 

  19. Gómez-Bernal H, Cedeño-Caero L, Gutiérrez-Alejandre A (2009) Liquid phase oxidation of dibenzothiophene with alumina-supported vanadium oxide catalysts: an alternative to deep desulfurization of diesel. Catal Today 142:227–233

    Article  Google Scholar 

  20. Cedeño-Caero L, Alvarez-Amparan MA (2014) Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzothiophene compounds. Reac Kinet Mech Cat 113:115–131

    Article  Google Scholar 

  21. Cedeño-Caero L, Gomez-Bernal H, Fraustro-Cuevas A, Guerra-Gomez HD, Cuevas-Garcia R (2008) Oxidative desulfurization of synthetic diesel using supported catalysts: Part III. Support effect on vanadium-based catalysts. Catal Today 133–135:244–254

    Article  Google Scholar 

  22. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom 135:167–175

    Article  CAS  Google Scholar 

  23. Demeter M, Neumann M, Reichelt W (2000) Mixed-valence vanadium oxides studied by XPS. Surf Sci 454–456:41–44

    Article  Google Scholar 

  24. Wua QH, Thissena A, Jaegermanna W, Liub M (2004) Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface. Appl Surf Sci 236:473–478

    Article  Google Scholar 

  25. Suchorskia Y, Rihko-Struckmann L, Klose F, Ye Y, Alandjiyska M, Sundmacher K, Weiss H (2005) Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Appl Surf Sci 249:231–237

    Article  Google Scholar 

  26. Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectrosc Relat Phenom 71:249–261

    Article  CAS  Google Scholar 

  27. Baltrusaitisa J, Mendoza-Sanchez JB, Fernandez V, Veenstra R, Dukstienee N, Roberts A, Fairleyga N (2015) Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl Surf Sci 326:151–161

    Article  Google Scholar 

  28. Spevack PA, McIntyre NS (1993) A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J Phys Chem 97:11020–11030

    Article  CAS  Google Scholar 

  29. Choi JG, Thompson LT (1996) XPS study of as-prepared and reduced molybdenum oxides. Appl Surf Sci 93:143–149

    Article  CAS  Google Scholar 

  30. Criinert W, Stakheev YA, Feldhaus R, Anders K, Shpiro ES, Minachev KM (1991) Analysis of Mo(3d) XPS spectra of supported mo catalysts: an alternative approach. J Phys Chem 95:1323–1328

    Article  Google Scholar 

  31. Alvarez-Amparán MA, Rodríguez-Gomeztagle J, Cedeño-Caero L (2015) Effect of the preparation method of MoO3/Al2O3 catalysts for the oxidative desulfurization of a diesel model (paper in Spanish). Efecto del método de preparación de catalizadores de MoO3/Al2O3 para la desulfuración oxidativa de un diesel modelo. Superf y Vacío 28:40–47

    Google Scholar 

  32. Arnoldy P, de Jonge JCM, Moulijn JA (1985) Temperature-programmed reduction of MoO3, and MoO2. J Phys Chem 89(21):4517–4526

    Article  CAS  Google Scholar 

  33. Cordero RL, Llambias FJG, Agudo AL (1991) Temperature-programmed reduction and zeta potential studies of the structure of Mo/O3Al2O3 and Mo/O3SiO2 catalysts effect of the impregnation pH and molybdenum loading. Appl Catal 74:125–136

    Article  Google Scholar 

  34. Cordero RL, Agudo AL (2000) Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts. Appl Catal A 202:23–35

    Article  Google Scholar 

  35. Wachs IE, Chena Y, Jih-Mirn J, Briand LE, Tanaka T (2003) Molecular structure and reactivity of the Group V metal oxides. Catal Today 78:13–24

    Article  CAS  Google Scholar 

  36. Weckhuysen BM, Keller DE (2003) Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today 78:25–46

    Article  CAS  Google Scholar 

  37. Reddy EP, Varma RS (2004) Preparation, characterization, and activity of Al2O3-supported V2O5 catalysts. J Catal 221:93–101

    Article  CAS  Google Scholar 

  38. Surnev S, Ramsey MG, Netzer FP (2003) Vanadium oxide surface studies. Prog Surf Sci 73:117–165

    Article  CAS  Google Scholar 

  39. Hari-Babu B, Venkateswara-Rao KT, Surendar M, Sai-Prasad PS, Lingaiah N (2015) Influence of promoters on the structural and catalytic functionalities of V2O5/Al2O3 catalysts for the ammoxidation of ortho-chlorotoluene. Reac Kinet Mech Cat 114:121–134

    Article  CAS  Google Scholar 

  40. Bernal HG, Caero LC (2005) Solvent effects during oxidation–extraction desulfurization process of aromatic sulfur compounds from fuels. Int J Chem React Eng. doi:10.2202/1542-6580.1246

    Google Scholar 

  41. Bielafiski A, Najbar M (1997) V2O5–MoO3 catalysts for benzene oxidation. Appl Catal A 157:223–261

    Article  Google Scholar 

  42. Bañares MA, Khatib SJ (2004) Structure–activity relationships in alumina-supported molybdena–vanadia catalysts for propane oxidative dehydrogenation. Catal Today 96:251–257

    Article  Google Scholar 

  43. Solsona B, Dejoz A, Garcia T, Concepción P, Lopez Nieto JM, Vázquez MI, Navarro MT (2006) Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catal Today 117:228–233

    Article  CAS  Google Scholar 

  44. Dai H, Bell AT, Iglesia E (2004) Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane. J Catal 221:491–499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financial supported by the Project Support Program for Research and Technological Innovation (PAPIIT) of UNAM (Projects IN115514 and IN115317) and IMP Project D.0047. Marco Antonio Alvarez-Amparán acknowledge the PhD National Scholarship (Scholarship Number 245610) to National Council of Science and Technology of Mexico (CONACyT). We thank C. Salcedo (XRD) and I. Puente (SEM–EDX) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Alvarez-Amparán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Amparán, M.A., Cedeño-Caero, L., Cortes-Jácome, M.A. et al. Relationship between the catalytic activity and Mo–V surface species in bimetallic catalysts for the oxidative desulfurization of dibenzothiophenic compounds. Reac Kinet Mech Cat 122, 869–885 (2017). https://doi.org/10.1007/s11144-017-1237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1237-4

Keywords

Navigation