Skip to main content
Log in

Green synthesis of UV and visible light active TiO2/WO3 powders and films for malachite green and ethylene photodegradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Powder nanocomposites of TiO2/WO3 are prepared by a simple solid-state thermal procedure from commercial oxide powders and cast thereafter as a film coating on TLC substrate. The WO3 content in the powder composites is varied from 0.5 to 50%. The phase composition and morphology of titania/tungsten composites and films is characterized by SEM and X-ray analysis. The photocatalytic activity of TiO2/WO3 powders is tested in the degradation of malachite green dye in aqueous solutions under UV and visible light irradiation. The effect of preparation temperature on the photocatalytic activity is also investigated. It is found out that the mixed powder of 5%WO3 manifests the best photocatalytic performance. The prepared powder photocatalyst is deposited as a film coating on TLC sheet for gas-phase application. The as-obtained composite coated photocatalysts with 5%WO3 are tested for air purification from ethylene contamination under UV and visible light illumination. The TiO2/WO3 coated photocatalysts show always a higher efficiency in comparison to that of the pure TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  2. Kalyanasundaram K, Graetzel M (eds) (1993) Photosensitization and photocatalysis using inorganic and organometalic compound. Kluwer, Dordrecht

    Google Scholar 

  3. Mills A, LeHunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol, A 108:1–35

    Article  CAS  Google Scholar 

  4. Serpone N, Pelizzetti E (eds) (1989) Photocatalysis: fundamentals and applications. Wiley, New York

    Google Scholar 

  5. Galves JB, Rodrigues SM (eds) (2003) Solar detoxification. UNESCO Publishing, Paris

    Google Scholar 

  6. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photoelectrochemical hydrogen generation from water using solar energy. Int J Hydrogen Energy 27:991–1022

    Article  CAS  Google Scholar 

  7. Asahi R, Morikawa T (2007) Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem Phys 339:57–63

    Article  CAS  Google Scholar 

  8. Valentin CD, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

    Article  Google Scholar 

  9. In S, Orlov A, Berg R, Garcıa F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791

    Article  CAS  Google Scholar 

  10. Ling Q, Sun J, Zhou Q (2008) Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen. Appl Surf Sci 254:3236–3241

    Article  CAS  Google Scholar 

  11. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196

    Article  CAS  Google Scholar 

  12. Bouras P, Stathatos E, Lianos P (2007) Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl Catal B Environ 73:51–59

    Article  CAS  Google Scholar 

  13. Egerton TA, Mattinson JA (2008) The influence of platinum on UV and ‘visible’ photocatalysis by rutile and Degussa P25. J Photochem Photobiol, A 194:283–289

    Article  CAS  Google Scholar 

  14. Kubacka A, Fernández-García M, Colón G (2008) Nanostructured Ti–M mixed-metal oxides: toward a visible light-driven photocatalyst. J Catal 254:272–284

    Article  CAS  Google Scholar 

  15. Lorret O, Francova D, Waldner G, Stelzer N (2009) W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl Catal B 91:39–46

    Article  CAS  Google Scholar 

  16. Thomas J, Kumar KP, Mathew S (2011) Enhancement of sunlight photocatalysis of nano TiO2 by Ag nanoparticles stabilized with D-glucosamine. Sci Adv Mater 3:59–65

    Article  Google Scholar 

  17. Zhao X, Li H, Wang HS, Zhong Z (2011) Preparation of mesoporous Ag-TiO2 thin films by a simple photocatalytic deposition method and their application as photocatalyst. Sci Adv Mater 3:984–988

    Article  CAS  Google Scholar 

  18. Karunakaran C, Sakthiraadha S, Gomathisankar P (2012) Hot-injection synthesis of bactericidal Sn-doped TiO2 nanospheres for visible-light photocatalysis. Mater Express 2:319–326

    Article  CAS  Google Scholar 

  19. Gao H, Liu W, Lu B, Liu F (2012) Photocatalytic activity of La, Y Co-doped TiO2 nanoparticles synthesized by ultrasonic assisted sol-gel method. J Nanosci Nanotechnol 12:3959–3965

    Article  CAS  Google Scholar 

  20. Theerakarunwong C, Ma ZF, Phanichphant S (2012) Pt/C doped TiO2/SWNTs as catalyst for methanol oxidation. J Nanosci Nanotechnol 12:3970–3973

    Article  CAS  Google Scholar 

  21. Fuerte A, Hernandez-Alonso MD, Maira AJ, Martinez-Arias A, Fernandez-Garcia M, Conesa JC, Soria J, Munuera G (2002) Nanosize Ti–W mixed oxides: effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation. J Catal 212:1–9

    Article  CAS  Google Scholar 

  22. Di Paola A, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75:87–93

    Article  Google Scholar 

  23. He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B (2003) Photochromism and size effect of WO3 and WO3 − TiO2 aqueous sol. Chem Mater 15:4039–4045

    Article  CAS  Google Scholar 

  24. Rampaul A, Parkin IP, O’Neill SA, DeSouza J, Mills A, Elliott N (2003) Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 22:35–44

    Article  CAS  Google Scholar 

  25. Robert D (2007) Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal Today 122:20–26

    Article  CAS  Google Scholar 

  26. Sajjad AKL, Shamaila S, Tian B, Chen F, Zhang J (2010) Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J Hazard Mater 177:781–791

    Article  CAS  Google Scholar 

  27. Bosh H, Janssen F (1988) Formation and control of nitrogen oxides. Catal Today 2:369–532

    Article  Google Scholar 

  28. Li XZ, Li FB, Yang CL, Ge WK (2001) Photocatalytic activity of WOx–TiO2 under visible light irradiation. J Photochem Photobiol, A 141:209–217

    Article  CAS  Google Scholar 

  29. Puddu V, Mokaya R, LiPuma G (2007) Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chem Commun 45:4749–4751

    Article  Google Scholar 

  30. Tian H, Ma J, Li K, Li J (2008) Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method. Mater Chem Phys 112:47–51

    Article  CAS  Google Scholar 

  31. Akurati K, Vital A, Dellemann JPh, Michailowa K, Graule T, Ferri D, Baiker A (2008) Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity. Appl Catal B 79:53–62

    Article  CAS  Google Scholar 

  32. Sajjad AKL, Shamaila S, Tian B, Chen F (2009) One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. Appl Catal B 91:397–405

    Article  CAS  Google Scholar 

  33. Leghari S, Sajjad Sh, Chen F, Zhang J (2011) WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem Eng J 166:906–915

    Article  CAS  Google Scholar 

  34. Ribonia F, Bettini L, Bahnemannd D, Selli E (2013) WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catal Today 209:28–34

    Article  Google Scholar 

  35. Petrović S, Stojadinović S, Lj Rožić, Radić N, Grbić B, Vasilić R (2015) Process modelling and analysis of plasma electrolytic oxidation of titanium for TiO2/WO3 thin film photocatalysts by response surface methodology. Surf Coat Technol 269:250–257

    Article  Google Scholar 

  36. Ismail A, Abdelfattah I, Helal A, Al-Sayari S, Robben L, Bahnemann D (2016) Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J Hazard Mater 307:43–54

    Article  CAS  Google Scholar 

  37. Lai CW, Sreekantan S (2012) Visible light photoelectrochemical performance of W-loaded TiO2 nanotube arrays: structural properties. J Nanosci Nanotechnol 12:3170–3174

    Article  CAS  Google Scholar 

  38. Bojinova A, Kralchevska R, Angelov I (2004) Titania/tungsten (VI) composites: characterization, optimal WO3 content, photocatalytic activity, role of the tungsten trioxide. Nanosci Nanotechnol 4:83–86

    Google Scholar 

  39. Bojinova A, Dushkin C (2011) Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light. Reac Kinet Mech Catal 103:239–250

    Article  CAS  Google Scholar 

  40. Bojinova A, Kralchevska R, Poulios I, Dushkin C (2007) Anatase/rutile TiO2 composites: influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry. Mater Chem Phys 106:187–192

    Article  CAS  Google Scholar 

  41. Tatsuma T, Saitoh S, Ohko Y, Fujishima A (2001) TiO2−WO3 Photoelectrochemical anticorrosion system with an energy storage ability. Chem Mater 13:2838–2842

    Article  CAS  Google Scholar 

  42. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A (2002) Energy storage of TiO2–WO3 photocatalysis systems in the gas phase. Langmuir 18:7777–7779

    Article  CAS  Google Scholar 

  43. Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A (2003) Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. Electrochem Commun 5:793–796

    Article  CAS  Google Scholar 

  44. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol, C 7:127–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Project DFNI-T02/16 of Bulgarian Fund of Scientific Research (No. 2742) and FP7 Horizon 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kaneva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojinova, A., Kaneva, N., Papazova, K. et al. Green synthesis of UV and visible light active TiO2/WO3 powders and films for malachite green and ethylene photodegradation. Reac Kinet Mech Cat 120, 821–832 (2017). https://doi.org/10.1007/s11144-016-1128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1128-0

Keywords

Navigation