Skip to main content
Log in

Simulation study of the effect of water removal from Fischer–Tropsch products on the process performance using a hydrophilic membrane reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, a mathematical model describing Fischer–Tropsch synthesis over an iron catalyst carried out in two configurations of membrane reactors was developed to predict the process performance. For this purpose, the impact of water removal from the reaction side on syngas conversion and on hydrocarbons selectivity was theoretically analyzed and quantified under different operating conditions. The obtained main results reveal that the process can be intensified when the catalyst was packed in a single region, whereas the produced water was continuously removed from the reaction side to the permeate side, which is constituted of two identical and parallel regions. This configuration design is characterized by a sufficient large area, which can enable fast water removal by an adequate sweep-fluid flow rate. As a result, the conversion and product selectivity could be enhanced obviously at the suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(A\) :

Cross section (m2)

\(A_{m}\) :

Membrane section (m2)

\(C_{pg}\) :

Specific heat transfer of the gas at constant pressure (J mol−1 K−1)

\(D\) :

Reactor diameter (m)

\(d_{p}\) :

Particle diameter (m)

\(E_{j}\) :

Activation energy for the reaction j (J mol−1)

\(F_{i}\) :

Molar flow rate of component i (mol s−1)

\(F_{T}^{0}\) :

Initial molar flow rate of each component (mol s−1)

\(F_{T}\) :

Total molar flow rate (mol s−1)

\(J_{{{\text{H}}_{2} {\text{O}}}}\) :

Permeation rate of water (mol m−3 s−1)

\(K_{j}\) :

Kinetic rate constant of the FT reaction (mol kg−1 s−1 MPa−1)

\(K_{WGS}\) :

Kinetic rate constant of the WGS reaction (mol kg−1 s−1)

\(L\) :

Reactor length (m)

\(l\) :

Dimensionless reactor length

\(M\) :

Inlet molar flow ratio between hydrogen and carbon monoxide

\(P_{T}\) :

Total pressure (Pa)

\(P_{i}\) :

Partial pressure of component i (Pa)

\(P_{{{\text{H}}_{2} {\text{O}}}}^{r}\) :

Water pressure in reaction side (Pa)

\(P_{{{\text{H}}_{2} {\text{O}}}}^{p}\) :

Water pressure in permeate side (Pa)

\(Q\) :

Volumetric flow rate (m3 s−1)

\(R_{i}\) :

Production rate of component i from the model (mol kg−1 s−1)

\(R_{j}\) :

Rate of reaction j (mol kg−1 s−1)

\(R_{WGS}\) :

Water gas shift reaction rate (mol kg−1 s−1)

\(r\) :

Radius of the reaction zone in MR1 (m)

\(r_{1}\) :

Radius of the permeate zone in MR2 (m)

\(r_{2}\) :

Radius of the MR2 (m)

\(S_{i}\) :

Product selectivity (%)

\(T\) :

Temperature (K)

\(T_{sh}\) :

Shell temperature (K)

\(U_{sh}\) :

Overall heat transfer coefficient shell-fluid (W m−2 K−1)

\(v\) :

Gas velocity (m s−1)

\(X_{\text{CO}}\) :

Carbon monoxide conversion in the reaction j

\(X_{{{\text{H}}_{2} }}\) :

Conversion of syngas

\(Y_{{{\text{H}}_{2} {\text{O}}}}\) :

Removal water

\(z\) :

Axial reactor coordinate

\(\beta\) :

Membrane permeability (mol s−1 m−2 Pa−1)

\(\mu\) :

Gas viscosity (Pa s)

\(\upsilon\) :

Stoichiometric coefficient

\(\varepsilon\) :

Bed porosity

\(\rho_{g}\) :

Gas density (kg m−3)

\(\rho\) :

Catalyst density (kg m−3)

\(\Delta H_{i}\) :

Enthalpy of formation of component i (J mol−1)

\(g\) :

Gas phase

\(i\) :

Component i

\(j\) :

Reaction j

m :

Constant

n :

Constant

O :

Inlet conditions

sh :

Shell side

FT :

Fischer–Tropsch

FTS :

Fischer–Tropsch Synthesis

HC :

Hydrocarbon

MR1:

Membrane reactor with the 1st configuration

MR2:

Membrane reactor with the 2nd configuration

WGS:

Water-gas-shift reaction

References

  1. Kang SH, Bae JW, Woo KJ, Prasad PSS, Jun KW (2010) Fuel Process Technol 91:399–403

    Article  CAS  Google Scholar 

  2. Sari A (2014) Chem Eng J 244:317–326

    Article  CAS  Google Scholar 

  3. Shin MS, Park N, Park MJ, Cheon JY, Kang JK, Jun KW, Ha KS (2014) Fuel Process Technol 118:235–243

    Article  CAS  Google Scholar 

  4. Zolfaghari Z, Tavasoli A, Tabyar S, Pour AN (2014) J Energy Chem 23:57–65

    Article  CAS  Google Scholar 

  5. Shimura K, Miyazawa T, Hanaoka T, Hirata S (2014) Appl Catal A Gen 475:1–9

    Article  CAS  Google Scholar 

  6. Kwack SH, Park MJ, Bae JW, Ha KS, Jun KW (2011) React Kinet Mech Catal 104:483–502

    Article  CAS  Google Scholar 

  7. Pour AN, Khodabandeh H, Izadyar M, Housaindokht MR (2014) React Kinet Mech Catal 111:29–44

    Article  Google Scholar 

  8. Kang SH, Koo HM, Kim AR, Lee DH, Ryu JH, Yoo YD, Bae JW (2013) Fuel Process Technol 109:141–149

    Article  CAS  Google Scholar 

  9. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  10. Fu T, Jiang Y, Lv J, Li Z (2013) Fuel Process Technol 110:141–149

    Article  CAS  Google Scholar 

  11. Rohde MP, Schaub G, Khajavi S, Jansen JC, Kapteijn F (2008) Microporous Mesoporous Mater 115:123–136

    Article  CAS  Google Scholar 

  12. Dalai AK, Das TK, Chaudhari KV, Jacobs G, Davis BH (2005) Appl Catal A Gen 289:135–142

    Article  CAS  Google Scholar 

  13. Espinoza RL, Du Toit E, Santamaria J, Menendez M, Coronas J, Irusta S (2000) Stud Surf Sci Catal 130:389–395

    Article  Google Scholar 

  14. Bayat M, Rahimpour MR, Moghtaderi B (2011) J Nat Gas Sci Eng 3:555–570

    Article  CAS  Google Scholar 

  15. Iliuta I, Larachi F, Fongarland P (2010) Ind Eng Chem Res 49:6870–6877

    Article  CAS  Google Scholar 

  16. Arabpour M, Rahimpour MR, Iranshahi D, Raeissi S (2012) J Nat Gas Sci Eng 9:209–219

    Article  CAS  Google Scholar 

  17. Rahimpour MR, Mirvakili A (2013) J Ind Eng Chem 19:508–522

    Article  CAS  Google Scholar 

  18. Marvast A, Sohrabi M, Zarrinpashneh S, Baghmisheh Gh (2005) Chem Eng Technol 28:78–86

    Article  CAS  Google Scholar 

  19. Mazzone LCA, Fernandes FAN (2006) Latin Am Appl Res 36:141–148

    CAS  Google Scholar 

  20. Fogler HS (2004) Elements of chemical reaction engineering. Prentice-Hall of India, New Delhi

    Google Scholar 

  21. Rahimpour MR, Jokar SM, Jamshidnejad Z (2012) Chem Eng Res Des 90:383–396

    Article  CAS  Google Scholar 

  22. Vervloet D, Kapteijn F, Nijenhuis J, van Ommen JR (2013) Catal Today 216:111–116

    Article  CAS  Google Scholar 

  23. Wang YN, Xu YY, Xiang HW, Li YW, Zhang BJ (2001) Ind Eng Chem Res 40:4324–4335

    Article  CAS  Google Scholar 

  24. Rahmati M, Mehdi M, Soleiman MB (2001) Can J Chem Eng 79:800–804

    Article  Google Scholar 

  25. Rohde MP (2010) In-situ H2O removal via hydrophilic membranes during Fischer–Tropsch and other fuel-related synthesis reaction. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  26. Fernandes FAN, Teles UM (2007) Fuel Process Technol 88:207–214

    Article  CAS  Google Scholar 

  27. Bayat M, Rahimpour MR (2012) J Nat Gas Sci Eng 9:73–85

    Article  CAS  Google Scholar 

  28. Fernandes FAN (2007) J Nat Gas Chem 16:107–114

    Article  CAS  Google Scholar 

  29. Jager B, Espinoza RL (1995) Catal Today 23:17–28

    Article  CAS  Google Scholar 

  30. Feyzi M, Jafari F (2012) Fuel Chem Technol 40:550–557

    Article  CAS  Google Scholar 

  31. Jung H, Yang JI, HoonYang J, Lee HT, HyunChun D, Kim HJ (2010) Fuel Process Technol 91:1839–1844

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dounia Alihellal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alihellal, D., Chibane, L. Simulation study of the effect of water removal from Fischer–Tropsch products on the process performance using a hydrophilic membrane reactor. Reac Kinet Mech Cat 117, 605–621 (2016). https://doi.org/10.1007/s11144-015-0961-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0961-x

Keywords

Navigation