Skip to main content
Log in

Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts for the complete oxidation of cyclohexane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Low cost dispersed supported cobalt oxide nanocatalysts on activated carbon (AC) were prepared by two different methods: (1) combined impregnation and deposition–precipitation (IMP-DP) and (2) heterogeneous deposition–precipitation (HDP). XRD, TEM, FESEM, BET and Boehm techniques were used for the characterization of the support and the catalysts. Characterization analyses indicated the negative effect of the wet impregnation method on the IMP-DP technique for the preparation of catalysts for the total oxidation of cyclohexane in air. The catalysts prepared by HDP and IMP-DP methods were found to have significant differences in oxidation activity, morphology, particle size, and shape of active sites. The HDP preparation method resulted in dispersed catalysts with particle sizes less than 15 nm, which were smaller than those prepared by the IMP-DP method. The morphology of cobalt oxide on activated carbon indicated “lamellar” and “sphere” shapes for catalysts prepared by the IMP-DP and HDP method, respectively. Higher removal efficiencies for cyclohexane were obtained for catalysts synthesized by HDP compared with those prepared by the IMP-DP method. The Eley–Rideal rate expression was found to be appropriate to describe the kinetics of cyclohexane oxidation over the range of experimental conditions employed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ci :

Inlet feed concentration (ppm)

Ce :

Exit gas concentration (ppm)

D:

Mean crystallite diameter (nm)

K:

Dimensionless shape factor = 0.9

λ:

X-ray wavelength

Β:

Line broadening at half maximum intensity

Θ :

Bragg angle

XT :

Steady state conversion of the cyclohexane

W:

Weight of catalyst loaded in reactor (g)

V :

Inlet molar flow rate of cyclohexane (mol/s)

r:

Rate of cyclohexane oxidation (mol/g s)

Objective F:

Objective function of GA methodology for estimating kinetic constants was the absolute error

E:

Activation energy (kJ/mol)

∆H:

Adsorption enthalpy (kJ/mol)

R:

Gas constant (J/mol/K)

R2 :

Correlation coefficient

N:

Reaction order

kr :

Kinetic constant (mol g−1 s−1)

Kads,c :

Adsorption constant of cylohexane

References

  1. Bozbiyik B, Duerinck T, Lannoeye J, Vos DE, Baron GV, Denayer JFM (2014) Adsorption and separation of n-hexane and cyclohexane on the UiO-66 metal–organic framework. Microporous Mesoporous Mater 183:143–149

    Article  CAS  Google Scholar 

  2. Khan FI, Ghoshal AK (2000) Review: removal of volatile organic compounds from polluted air. J Loss Prev Ind 13:527–545

    Article  Google Scholar 

  3. Ilieva L, Petrova P, Tabakova T, Zanella R, Kaszkur Z (2012) Gold catalysts on ceria doped with MeOx (Me = Fe, Mn, Co and Sn) for complete benzene oxidation: effect of composition and structure of the mixed supports. Reac Kinet Mech Cat 105:23–37

    Article  CAS  Google Scholar 

  4. Hussain M, Ceccarelli R, Marchisio DL, Fino D, Russo N, Geobaldo F (2010) Synthesis, characterization, and photo-catalytic application of novel TiO2 nano particles. Chem Eng J 157:45–51

    Article  CAS  Google Scholar 

  5. Hussain M, Russo N, Saracco G (2011) Photo-catalytic Abatement of VOCs by Novel Optimized TiO2 Nanoparticles. Chem Eng J 166:138–149

    Article  CAS  Google Scholar 

  6. Padhi SK, Gokhale S (2014) Biological oxidation of gaseous VOCs—rotating biological contactor a promising and eco-friendly technique. J Environ Chem Eng 2:2085–2102

    Article  CAS  Google Scholar 

  7. Liu L, Huang D, Yang F (2009) Toluene recovery from simulated gas effluent using POMS membrane separation technique. Sep Purifi Technol 66:411

    Article  CAS  Google Scholar 

  8. www.epa.gov/iris, EPA 635/R-03/008

  9. Rusu AO, Dumitriu E (2003) Destruction of volatile organic compounds by catalytic oxidation. Environ Eng Manag J 2:273–302

    CAS  Google Scholar 

  10. Hettige C, Mahanama KRR, Dissanayake DP (2001) Cyclohexane oxidation and carbon deposition over metal oxide catalysts. Chemosphere 43:1079–1083

    Article  CAS  Google Scholar 

  11. Murcia JJ, Hidalgo MC, Navío JA, Vaiano V, Sannino D, Ciambelli P (2013) Cyclohexane photo-catalytic oxidation on Pt/TiO2 catalysts. Catal Today 209:164–169

    Article  CAS  Google Scholar 

  12. Einag H, Futamur S, Ibusuki T (2002) Heterogeneous photo-catalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photo irradiated TiO2 catalyst. Appl Catal B 38:215–225

    Article  Google Scholar 

  13. Santos Xavier LPd, Rico-Pérez V, Hernández-Giménez AM, Lozano-Castelló D, Bueno-López A (2015) Simultaneous catalytic oxidation of carbon monoxide, hydrocarbons and soot with Ce–Zr–Nd mixed oxides in simulated diesel exhaust Appl. Catal B 162:412–419

    Article  Google Scholar 

  14. Merino MAA, Ribeiro MF, Silva JM, Marin FC, Ho´dar FJM (2004) Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion. Environ Sci Technol 38:4664–4670

    Article  Google Scholar 

  15. Gaur V, Sharma A, Verma N (2005) Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon 43:3041–3053

    Article  CAS  Google Scholar 

  16. Shim WG, Kim SC (2010) Heterogeneous adsorption and catalytic oxidation of benzene, toluene and xylene over spent and chemically regenerated platinum catalyst supported on activated carbon. Appl Surf Sci 256:5566–5571

    Article  CAS  Google Scholar 

  17. Lu CY, Wey MY (2007) Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas. Fuel Process Technol 88:557–567

    Article  CAS  Google Scholar 

  18. Wyrwalski F, Lamonier JF, Siffert S, Gengembre L, Aboukaı S (2007) Modified Co3O4/ZrO2 catalysts for VOC emissions abatement. Catal Today 119:332–337

    Article  CAS  Google Scholar 

  19. Bonelli R, Albonetti S, Morandic V, Ortolanic L, Riccobened PM, Scire S, Zacchini S (2010) Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Appl Catal A 395:10–18

    Article  Google Scholar 

  20. Lu CY, Wey MY, Chen LI (2007) Application of polyol process to prepare AC-supported nano catalyst for VOC oxidation. Appl Catal A 325:163–174

    Article  CAS  Google Scholar 

  21. Alvim-Ferraz MCM, Gaspar CMTB (2004) Active carbons impregnated before activation of olive stones: catalytic activity to remove benzene from gaseous emissions. J Phys Chem Solids 65:655–659

    Article  CAS  Google Scholar 

  22. Nogueira FGE, Lopes JH, Silva AC, Lago RM, Fabris JD, Oliveira LCA (2011) Catalysts based on clay and iron oxide for oxidation of toluene. Appl Clay Sci 51:385–389

    Article  CAS  Google Scholar 

  23. Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Catalytic oxidation of benzene over CuO/Ce1 − xMnxO2 catalysts. Appl Catal B 103:143–148

    Article  CAS  Google Scholar 

  24. Wyrwalski F, Lamonier JF, Siffert S, Aboukaı¨s A (2007) Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts. Appl Catal B 70:393–399

    Article  CAS  Google Scholar 

  25. Li WB, Wang JX, Gong H (2009) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148:81–87

    Article  CAS  Google Scholar 

  26. Wu JCS, Lin ZA, Tsai FM, Pan JW (2000) Low temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal Today 63:419–426

    Article  CAS  Google Scholar 

  27. Shaoyong H, Changbin Z, Hong H (2009) In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst. Environ Sci 21:985–990

    Article  Google Scholar 

  28. Kang M, Bae YS, Lee CH (2005) Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon 43:1512–1516

    Article  CAS  Google Scholar 

  29. Torres SM, Hódar FJM, Cadenas AFP, Marín FC (2010) Design of low-temperature Pt-carbon combustion catalysts for VOC’s treatments. J Hazard Mater 183:814–822

    Article  Google Scholar 

  30. Bedia J, Rosas JM, Rodrı´guez-Mirasol J, Cordero T (2010) Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl Catal B 94:8–18

    Article  CAS  Google Scholar 

  31. Lahouss C, Cors N, Ruaux V, Grange P, Cellier C (2006) Preparation of Pd on carbon black by deposition- precipitation: study of the effect of the support functionalisation. Sci Bases Prep Heterog Catal 162:601–608

    Article  Google Scholar 

  32. Huang Z, Cui F, Xue J, Zuo J, Chen J, Chungu X (2012) Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition–precipitation methods: texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol. Catal Today 183:45–51

    Google Scholar 

  33. Luminita P, Barbara M, Marija K, Mariana C, Monica C, Maria Z (2007) Characterization of LaCoO3 powders obtained by water-based sol–gel method with citric acid. J Eur Ceram Soc 27:4407–4411

    Article  Google Scholar 

  34. Rousseau S, Loridant S, Delichere P, Boreave A, Deloume JP, Vernoux P (2009) La(1−x)SrxCo(1−y)FeyO3 perovskites prepared by sol–gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Appl Catal B 88:438–447

    Article  CAS  Google Scholar 

  35. Keränen J, Guimon C, Iiskola E, Niinistö L, Auroux A (2003) Atomic layer deposition and surface characterization of highly dispersed titania/silica-supported vanadia catalysts. Catal Today 78:149–157

    Article  Google Scholar 

  36. Gould TD, Lubers AM, Neltner BT, Carrier JV, Weimer AW, Falconer JL, Medlin JW (2013) Synthesis of supported Ni catalysts by atomic layer deposition. J Catal 303:9–15

    Article  CAS  Google Scholar 

  37. Gayán P, Dueso C, Abad A, Adanez J, De Diego LF, García-Labiano F (2009) NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition–precipitation methods. Fuel 88:1016–1023

    Article  Google Scholar 

  38. Menezes WG, Altmann L, Zielasek V, Thiel K, Bäumer M (2013) Bimetallic Co–Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. J Catal 300:125–135

    Article  CAS  Google Scholar 

  39. Lamallem M, Ayadi H, Gennequin C, Cousin R, Siffert S, Aı¨ssi F, Aboukaı¨s A (2008) Effect of the preparation method on Au/Ce-Ti-O catalysts activity for VOCs oxidation. Catal Today 137:367–372

    Article  CAS  Google Scholar 

  40. Sellick DR, Aranda A, García T, López JM, Solsona B, Mastral AM, Morgan DJ, Carley AF, Taylor SH (2013) Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Appl Catal B 132–133:98–106

    Article  Google Scholar 

  41. Zabihi M, Ahmadpour A, HaghighiAsl A (2009) Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J Hazad Mater 167:230–236

    Article  CAS  Google Scholar 

  42. Zabihi M, HaghighiAsl A, Ahmadpour A (2010) Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J Hazard Mater 174:251–256

    Article  CAS  Google Scholar 

  43. Ahmadpour A, Zabihi M, Tahmasbi M, RohaniBastami T (2010) Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. J Hazard Mater 182:552–556

    Article  CAS  Google Scholar 

  44. Ahmadpour A, RohaniBastami T, Tahmasbi M, Zabihi M (2012) Rapid removal of heavy metal ions from aqueous solutions by low cost adsorbents. Int J Global Environ Issues 12:148–151

    Article  Google Scholar 

  45. Hasar H (2003) Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. J Hazard Mater B97:49–57

    Article  Google Scholar 

  46. Lu CY, Wey MY, Chuang KH (2009) Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nano tube. Appl Catal B 90:652–661

    Article  CAS  Google Scholar 

  47. Chaoquan H (2011) Catalytic combustion kinetics of acetone and toluene over Cu0.13Ce0.87Oy catalyst. Chem Eng J 168:1185–1192

    Article  Google Scholar 

  48. Dhumal SS, Saha RK (2006) Application of genetic algorithm for evaluation of kinetic parameters of coal pyrolysis. J Energy Environ 5:112–124

    Google Scholar 

  49. Eftaxias A, Font J, Fortuny A, Fabregat A, Stu¨ber F (2002) Non-linear kinetic parameter estimation using simulated annealing. Comput Chem Eng 26:1725–1733

    Article  CAS  Google Scholar 

  50. Junmeng C, Weixuan W, Ronghou L (2013) Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis. Bioresour Technol 132:423–426

    Article  Google Scholar 

  51. Gurbania A, Ayastuya JL, Gonza´lez-Marcosa MP, Herrerob JE, Guilb JM, Gutie´rrez-Ortiz MA (2009) Comparative study of CuO–CeO2 catalysts prepared by wet impregnation and deposition–precipitation. Int J Hydrog Energy 34:547–553

    Article  Google Scholar 

  52. Blasin-Aubé V, Belkouch J, Monceaux L (2003) General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst—influence of mixture. Appl Catal B 43:175–186

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance of Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Khorasheh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabihi, M., Khorasheh, F. & Shayegan, J. Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts for the complete oxidation of cyclohexane. Reac Kinet Mech Cat 114, 611–628 (2015). https://doi.org/10.1007/s11144-014-0824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0824-x

Keywords

Navigation