Skip to main content
Log in

Glycerol conversion to lactic acid with sodium hydroxide as a homogeneous catalyst in a fed-batch reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study investigated a fed-batch process for glycerol conversion to lactic acid with sodium hydroxide (NaOH) as homogeneous catalyst, with the aim to reduce the corrosiveness of catalyst to reactor. At the optimal conditions of the fed-batch process (1.1 M initial glycerol concentration, reaction time of 220 min, reaction temperature of 300 °C, NaOH concentration around 0.2 M), lactic acid yield reached 82 mol%, with 93 mol% of glycerol conversion. A first order kinetic model in the fed-batch conversion of glycerol was developed and validated under different process conditions. The corrosiveness to stainless steel reactor in glycerol conversion in the fed-batch process, measured as Fe3+ at the end of reaction, decreased from 9.5 to 1.5 ppm Fe3+ when compared to a batch process using a homogeneous 1.25 M NaOH as catalyst. Application of the fed-batch reactor in the crude glycerol conversion reached the maximum lactic acid yield of 72.9 mol% with 92.4 mol% glycerol conversion, but high soap content in crude glycerol has negative effects on both lactic acid yield and glycerol conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    Article  CAS  Google Scholar 

  2. Balaraju M, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2012) Catalytic hydrogenolysis of biodiesel derived glycerol to 1,2-propanediol over Cu–MgO catalysts. Catal Sci Technol 2(9):1967

    Article  CAS  Google Scholar 

  3. Ramirez-Lopez CA, Ochoa-Gomez JR, Fernandez-Santos M, Gomez-Jimenez-Aberasturi O, Alonso-Vicario A, Torrecilla-Soria J (2010) Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind Eng Chem Res 49:6270–6278

    Article  CAS  Google Scholar 

  4. Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C, Nocito F (2011) Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 67(6):1308–1313

    Article  CAS  Google Scholar 

  5. Liu Y, Tuysuz H, Jia CJ, Schwickardi M, Rinaldi R, Lu AH, Schmidt W, Schuth F (2010) From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chem Commun 46(8):1238–1240

    Article  CAS  Google Scholar 

  6. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodríguez A, Ramírez-López C, Lorenzo-Ibarreta L, Torrecilla-Soria J, Villarán-Velasco MC (2009) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Appl Catal A 366(2):315–324

    Article  Google Scholar 

  7. Yuan Z, Wang J, Wang L, Xie W, Chen P, Hou Z, Zheng X (2010) Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour Technol 101(18):7099–7103

    Article  Google Scholar 

  8. Cheng L, Liu L, Ye XP (2013) Acrolein production from crude glycerol in sub- and super-critical water. J Am Oil Chem Soc 90(4):601–610

    Article  CAS  Google Scholar 

  9. Liu L, Ye XP, Bozell JJ (2012) A comparative review of petroleum-based and bio-based acrolein production. Chemsuschem 5(7):1162–1180

    Article  CAS  Google Scholar 

  10. Cheng L, Ye XP (2009) Recent progress in converting biomass to biofuels and renewable chemicals in sub- or supercritical water. Biofuels 1(1):109–128

    Article  Google Scholar 

  11. Cheng L, Ye XP (2009) A DRIFTS study of catalyzed dehydration of alcohols by alumina-supported heteropoly acid. Catal Lett 130(1–2):100–107

    Article  CAS  Google Scholar 

  12. Datta R, Tsai SP (1997) Lactic acid production and potential uses: a technology and economics assessment. ACS Symp Ser 666:224–236

    Article  CAS  Google Scholar 

  13. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

  14. Kishida H, Jin F, Zhou Z, Moriya T, Enomoto H (2005) Conversion of glycerin into lactic acid by alkaline hydrothermal reaction. Chem Lett 34(11):1560–1561

    Article  CAS  Google Scholar 

  15. Shen Z, Jin FM, Zhang YL, Wu B, Kishita A, Tohji K, Kishida H (2009) Effect of alkaline catalysts on hydrothermal conversion of glycerin into lactic acid. Ind Eng Chem Res 48(19):8920–8925

    Article  CAS  Google Scholar 

  16. Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au–Pt/TiO2 catalysts. Chemistry 16(25):7368–7371

    Article  CAS  Google Scholar 

  17. Purushothaman RKP, van Haveren J, van Es DS, Melián-Cabrera I, Meeldijk JD, Heeres HJ (2014) An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl Catal B 147:92–100

    Article  CAS  Google Scholar 

  18. Lakshmanan P, Upare PP, Le N-T, Hwang YK, Hwang DW, Lee UH, Kim HR, Chang J-S (2013) Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid. Appl Catal A 468:260–268

    Article  CAS  Google Scholar 

  19. Yamanè Tsuneo, Shimizu S (1984) Fed-batch techniques in microbial processes. Bioprocess Parameter Control, vol 30. Springer, Berlin Heidelberg, pp 147–194

    Chapter  Google Scholar 

  20. Davies ML, Schreiber I, Scott SK (2004) Dynamical behaviour of the Belousov–Zhabotinsky reaction in a fed-batch reactor. Chem Eng Sci 59(1):139–148

    Article  CAS  Google Scholar 

  21. Immer JG, Lamb HH (2010) Fed-batch catalytic deoxygenation of free fatty acids. Energy Fuel 24:5291–5299

    Article  CAS  Google Scholar 

  22. Kishida H, Jin FM, Moriya T, Enomoto H (2006) Kinetic study on conversion of glycerin to lactic acid by alkaline hydrothermal reaction. Kagaku Kogaku Ronbun 32(6):535–541

    Article  CAS  Google Scholar 

  23. Draper NR, Smith H (1998) Applied regression analysis. Wiley-Interscience, New York

    Book  Google Scholar 

  24. Chen L, Ren SJ, Ye XP (2014) Lactic acid production from glycerol using CaO as solid base catalyst. Fuel Process Technol 120:40–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the United Soybean Board and the U.S. Department of Agriculture HATCH project No. TEN00428.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Philip Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ren, S. & Ye, X.P. Glycerol conversion to lactic acid with sodium hydroxide as a homogeneous catalyst in a fed-batch reactor. Reac Kinet Mech Cat 114, 93–108 (2015). https://doi.org/10.1007/s11144-014-0786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0786-z

Keywords

Navigation