Skip to main content

Fed-batch techniques in microbial processes

  • Conference paper
  • First Online:
Bioprocess Parameter Control

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 30))

Abstract

This article focuses on the recent world-wide advances of the biotechnology of the increasingly important fed-batch (or semi-batch) cultivation technique used in microbial processes. The history and characteristics of the fed-batch technique in microbial reactions are reviewed and examples of those fed-batch operations are cited which have greatly increased the productivity of microbial conversions in comparison to conventional batch operation; the various fed-batch techniques will be classified according to the mode of nutrient-feeding. Theoretical mathematical models are compared with experimental results. Fed-batch cultures with automatic feedback control are discussed in detail. Cultivation of high microbial cell concentrations, repeated fed-batch operations, and the start-up of microbial processes are described and, finally, some future prospects of fed-batch techniques in microbial processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a1, a2, a3 :

constants

b1, b2, b3 :

constants

c:

increment in culture volume per unit volumetric feed of substrate

C:

dimensionless c

D:

dilution rate, h−1

DO, [DO]:

dissolved oxygen concentration, mol l−1 or ppm

f:

feed rate, l h−1 or g h−1

F:

dimensionless f

i:

concentration of inhibitory metabolite

J:

objective function

ky, k iy , k oy :

cell yields based on growth-limiting substrate, i-species, and oxygen, respectively

ks, k os :

saturation constants of growth and of oxygen consumption, respectively, g l−1

kL a:

volumetric oxygen transfer coefficient, h−1

Ks :

dimensionless ks

Kp :

proportional band

m, mi :

maintenance coefficients, g g−1 h−1

M:

dimensionless m

OAR:

oxygen absorption rate, mol l−1 h−1

p:

metabolite concentration, mol l−1

\(q_{o_2 }\) :

specific oxygen consumption rate, h−1

qp :

specific production rate of metabolite, h−1

r:

volumetric rate of formation and consumption, mol l−1

rc, r ′c , r ″c , r ⃛'c :

cell mass productivity, g l−1 h−1

RQ:

respiratory quotient

s, si :

substrate concentration, g l−1

S:

dimensionless s

t:

time, h

T:

time constant

x:

cell concentration, g l−1

X:

dimensionless x

v:

volume of culture broth, l

V:

dimensionless v

z:

actuating signal

ε:

relative deviation

θ:

dimensionless time

θ:

time, h

\(\bar \Lambda\) :

mean age of culture

Μ:

specific growth rate, h−1

ϱ:

density, g cm−3

CO2 :

carbon dioxide

d:

differential

EtOH:

ethanol

est:

estimated

f:

final

i:

integral

in:

in the feed

max:

maximum

0:

initial

O2 :

oxygen

s:

mass or standard

T:

transition point

v:

volumetric

vap:

vaporization

w:

water

i:

i-species

max:

maximum

o:

oxygen dimensionless

References

  1. Edwards, V. H. et al.: Biotech. Bioeng. 7, 975 (1970)

    Google Scholar 

  2. Pirt, S. J.: Principles of Microbe and Cell Cultivation, p. 211, Oxford-London: Blackwell Scientific Publications 1975

    Google Scholar 

  3. Yoshida, F. et al.: Biotech. Bioeng. 15, 257 (1973)

    Google Scholar 

  4. Burrows, S.: Baker's Yeast, in: The Yeast (eds. Rose, A. H., Harrison, J. S.), vol. 3, p. 350, New York: Academic Press 1970

    Google Scholar 

  5. Clark, D. J. et al.: Biochem. Biophys. Acta 92, 85 (1964)

    Google Scholar 

  6. Hsu, E. J. et al.: J. Bacteriol. 98, 172 (1969)

    Google Scholar 

  7. Yamane, K. et al.: J. Biochem. 67, 9 (1970)

    Google Scholar 

  8. Hulme, M. A. et al.: Nature 226, 469 (1970)

    Google Scholar 

  9. Kao, E. I.: Biotech. Bioeng. 18, 1493 (1976)

    Google Scholar 

  10. Blanch, H. W. et al.: ibid. 18, 748 (1976)

    Google Scholar 

  11. Yamanè, T.: Hakkokogaku 56, 310 (1978)

    Google Scholar 

  12. Woehrer, W. et al.: Biotech. Bioeng. 23, 567 (1981)

    Google Scholar 

  13. Wang, H. Y. et al.: ibid. 21, 975 (1979)

    Google Scholar 

  14. White, J.: Yeast Technology, p. 31, New York: John Wiley Sons, Inc. 1954

    Google Scholar 

  15. Ohhashi, M.: Bull. Chem. Soc. Japan 61, 1001 (1958)

    Google Scholar 

  16. Hospodka, J.: Biotech. Bioeng. 8, 117 (1966)

    Google Scholar 

  17. Miskiewicz, T. et al.: ibid. 17, 1829 (1975)

    Google Scholar 

  18. Aiba, S. et al.: ibid. 18, 1001 (1976)

    Google Scholar 

  19. Wang, H. Y. et al.: ibid. 19, 69 (1977)

    Google Scholar 

  20. Dairaku, K. et al.: ibid. 23, 2069 (1981)

    Google Scholar 

  21. Dairaku, K. et al.: J. Ferment. Technol. 61, 189 (1983)

    Google Scholar 

  22. Bach, H. P. et al.: Biotech. Bioeng. 20, 799 (1978)

    Google Scholar 

  23. Nanba, A. et al.: J. Ferment. Technol. 59, 383 (1981)

    Google Scholar 

  24. Harrison, D. E. F. et al.: Fermentation Technology Today (ed. Terui, G.), p. 491, Osaka: Society of Fermentation Technology, Japan 1972

    Google Scholar 

  25. Yamanè, T. et al.: J. Ferment. Technol. 54, 229 (1976)

    Google Scholar 

  26. Srinivasen, V. R. et al.: Biotech. Bioeng. 19, 153 (1977)

    Google Scholar 

  27. Minami, K. et al.: J. Ferment. Technol. 56, 35 (1978)

    Google Scholar 

  28. Watteeuw, C. M. et al.: Biotech. Bioeng. 21, 1221 (1979)

    Google Scholar 

  29. Reuss, M.: Eur. J. Appl. Microbiol. 1, 295 (1975)

    Google Scholar 

  30. Nishio, N. et al.: J. Ferment. Technol. 55, 151 (1977)

    Google Scholar 

  31. Yano,.T. et al.: ibid. 56, 416(1978)

    Google Scholar 

  32. Kobayashi, T. et al.: Biotech. Bioeng. Symp. 9, 73 (1979)

    Google Scholar 

  33. Mori, H. et al.: J. Chem. Eng. Japan 12, 313 (1979)

    Google Scholar 

  34. Huang, S. Y. et al.: Biotech. Bioeng. 23, 1491 (1981)

    Google Scholar 

  35. Yamanè, T. et al.: ibid. 23, 2509 (1981)

    Google Scholar 

  36. Matsumura, M. et al.: J. Ferment. Technol. 60, 565 (1982)

    Google Scholar 

  37. Moyer, J. A. et al.: J. Bact. 51, 57 (1946)

    Google Scholar 

  38. Singh, K. et al.: ibid. 56, 339 (1948)

    Google Scholar 

  39. Brown, W. E. et al.: Ind. Eng. Chem. 42, 1769 (1950)

    Google Scholar 

  40. Brown, W. E. et al.: ibid. 42, 1823 (1950)

    Google Scholar 

  41. Soltero, F. V. et al.: Appl. Microbiol. 1, 52 (1953)

    Google Scholar 

  42. Anderson, R. F. et al.: Ind. Eng. Chem. 45, 768 (1953)

    Google Scholar 

  43. Hosler, P. et al.: ibid. 45, 872 (1953)

    Google Scholar 

  44. Davey, V. F. et al.: Appl. Microbiol. 1, 208 (1953)

    Google Scholar 

  45. Soltero, F. V. et al.: ibid. 2, 41 (1954)

    Google Scholar 

  46. Anderson, R. F. et al.: Agric. Food Chem. 4, 556 (1956)

    Google Scholar 

  47. Noguchi, Y. et al.: J. Ferment. Technol. 38, 511 (1960)

    Google Scholar 

  48. Hockenhull, D. J. D. et al.: Chem. Ind., p. 607 (1968)

    Google Scholar 

  49. Matelovà, V.: Appl. Microbiol. 23, 669 (1972)

    Google Scholar 

  50. McCann, E. P. et al.: J. appl. Chem. Biotechnol. 22, 1201 (1972)

    Google Scholar 

  51. Pan, C. H. et al.: Dev. Ind. Microbiol. 13, 103 (1972)

    Google Scholar 

  52. Squires, R. W.: ibid. 13, 128 (1972)

    Google Scholar 

  53. Calam, C. T. et al.: J. appl. Chem. Biotechnol. 23, 225 (1973)

    Google Scholar 

  54. Fishman, V. M. et al.: Biotech. Bioeng. Symp. 4, 647 (1974)

    Google Scholar 

  55. Hegewald, E. et al.: Biotech. Bioeng. 23, 1563 (1981)

    Google Scholar 

  56. Mou, D.-G. et al.: ibid. 25, 225, and 257 (1983)

    Google Scholar 

  57. Singh, A. et al.: Eur. J. Appl. Microbiol. 3, 97 (1976)

    Google Scholar 

  58. Smith, C. G.: Appl. Microbiol. 4, 232 (1956)

    Google Scholar 

  59. Calam, C. T. et al.: J. appl. Chem. Biotechnol. 21, 181 (1971)

    Google Scholar 

  60. Martin, J. F. et al.: Dev. Ind. Microbiol. 15, 324 (1974)

    Google Scholar 

  61. Matsumura, M. et al.: J. Ferment. Technol. 59, 115 (1981)

    Google Scholar 

  62. Tanaka, K. et al.: J. Agric. Chem. Soc. Japan 34, 593 (1960)

    Google Scholar 

  63. Su, Y.-C. et al.: Bull. Agr. Chem. Soc. Japan 24, 525 (1960)

    Google Scholar 

  64. Tsunoda, T. et al.: J. Gen. Appl. Microbiol. 7, 18 (1961)

    Google Scholar 

  65. Oki, T. et al.: Agr. Biol. Chem. 32, 119 (1968)

    Google Scholar 

  66. Yamamoto, M. et al.: J. Ferment. Technol. 50, 876 (1972)

    Google Scholar 

  67. Kishimoto, M. et al.: ibid. 59, 43, and 125 (1981)

    Google Scholar 

  68. Yamada, H. et al.: Fermentation Technology Today (ed. Terui, G.), p. 445, The Society of Fermentation Technology Japan 1972

    Google Scholar 

  69. Ohno, H. et al.: Biotech. Bioeng. 18, 847 (1976)

    Google Scholar 

  70. Aiba, S. et al.: Biotechnol. Letters 2, 525 (1980)

    Google Scholar 

  71. Aiba, S. et al.: Appl. Environ. Microbiol. 43, 289 (1982)

    Google Scholar 

  72. Fujio, Y. et al.: J. Ferment. Technol. 49, 626 (1971)

    Google Scholar 

  73. Gray, P. P. et al: Biotech. Bioeng. 15, 1179 (1973)

    Google Scholar 

  74. Markkanen, P. et al.: J. appl. Chem. Biotechnol. 26, 41 (1976)

    Google Scholar 

  75. Yamanè, T. et al.: J. Ferment. Technol. 55, 233 (1977)

    Google Scholar 

  76. Suga, K. et al.: Proc. Bioconversion and Biochem. Eng. Symp. 2, 371 (1980)

    Google Scholar 

  77. Allen, A. L. et al.: Biotech. Bioeng. 23, 2641 (1981)

    Google Scholar 

  78. Gottvaldovà, M. et al.: Biotechnol. Letters 4, 229 (1982)

    Google Scholar 

  79. Kojima, I. et al.: J. Ferment. Technol. 50, 716 (1972)

    Google Scholar 

  80. Whitaker, A.: Process Biochem., May, p. 10 (1980)

    Google Scholar 

  81. Darken, M. A.: Appl. Microbiol. 7, 301 (1959)

    Google Scholar 

  82. Masai, H. et al.: Bull. Agr. Chem. Soc. Japan 52, R103 (1978)

    Google Scholar 

  83. Mori, H. et al.: J. Chem. Eng. Japan 14, 65 (1981)

    Google Scholar 

  84. Yamauchi, H. et al.: J. Ferment. Technol. 61, 275 (1983)

    Google Scholar 

  85. Endo, I. et al.: Proceeding of 2nd PACHEC, p. 583, Denver, USA 1977

    Google Scholar 

  86. Pirt, S. J.: J. appl. Chem. Biotechnol. 24, 415 (1974)

    Google Scholar 

  87. Dunn, I. J. et al.: Biotech. Bioeng. 17, 1805 (1975)

    Google Scholar 

  88. Yamanè, T. et al.: J. Ferment. Technol. 55, 156 (1977)

    Google Scholar 

  89. Pirt, S. J.: Anal. N.Y. Acad. Sci. 326, 119 (1979)

    Google Scholar 

  90. Dunn, I. J.: ibid. 326, 127 (1979)

    Google Scholar 

  91. Yamanè, T. et al.: J. Ferment. Technol. 55, 380 (1977)

    Google Scholar 

  92. Lim, H. C.: Biotech. Bioeng. 18, 1635 (1976)

    Google Scholar 

  93. Jordan, R. C. et al.: J. Bact. 48, 579 (1944)

    Google Scholar 

  94. Monod, J.: Ann. Rev. Microbiol. 3, 371 (1949)

    Google Scholar 

  95. Kalogerakis, N. et al: Biotech. Bioeng. 23, 921 (1981)

    Google Scholar 

  96. Marr, A. G. et al.: Ann. N.Y. Acad. Sci. 102, 536 (1979)

    Google Scholar 

  97. Lim, H. C. et al.: Biotech. Bioeng. 19, 425 (1977)

    Google Scholar 

  98. Keller, R. et al.: J. appl. Chem. Biotechnol. 28, 508 (1978)

    Google Scholar 

  99. Constantinides, A.: Ann. N.Y. Acad. Sci. 102, 193 (1979)

    Google Scholar 

  100. Yamanè, T. et al.: J. Ferment. Technol. 55, 587 (1977)

    Google Scholar 

  101. Dale, R. F. et al.: Appl. Microbiol. 1, 68 (1953)

    Google Scholar 

  102. Martin, R. G.: Anal. Biochem. 8, 43 (1964)

    Google Scholar 

  103. Pirt, S. J.: Biochem. J. 121, 293 (1971)

    Google Scholar 

  104. Strohm, J. A. et al.: Ind. Eng. Chem. 53, 760 (1961)

    Google Scholar 

  105. Yano, T. et al.: J. Ferment. Technol. 57, 91 (1979)

    Google Scholar 

  106. Yano, T. et al.: ibid. 59, 295 (1981)

    Google Scholar 

  107. Dietrich, K. R.: Ablaufverwertung und Abwasserreinigung, p. 280, A. Hüthig, Heidelberg 1959

    Google Scholar 

  108. Dairaku, K. et al.: Biotech. Bioeng. 21, 1671 (1979)

    Google Scholar 

  109. Yano, T. et al.: J. Ferment. Technol. 56, 421 (1978)

    Google Scholar 

  110. Yamanè, T. et al.: Biotech. Bioeng. 23, 2493 (1981)

    Google Scholar 

  111. Kishimoto, M. et al.: Biotechnol. Letters 2, 403 (1980)

    Google Scholar 

  112. Suzuki, T. et al.: Biotech. Bioeng. (to be submitted 1984)

    Google Scholar 

  113. Landwall, P. et al.: J. Gen. Microbiol. 103, 345 (1977)

    Google Scholar 

  114. Keller, R. et al.: J. appl. Chem. Biotechnol. 28, 784 (1978)

    Google Scholar 

  115. Shioya, S. et al.: J. Chem. Technol. Bioeng. 29, 180 (1979)

    Google Scholar 

  116. Weigand, W. A.: Biotech. Bioeng. 23, 249 (1981)

    Google Scholar 

  117. Mori, H. et al.: J. Ferment. Technol. 61, 391 (1983)

    Google Scholar 

  118. Yamanè, T. et al.: Biotech. Bioeng. 21, 111 (1979)

    Google Scholar 

  119. Mori, H. et al.: J. Ferment. Technol. 61, 305 (1983)

    Google Scholar 

  120. Dairaku, K. et al.: ibid. 60, 67 (1982)

    Google Scholar 

  121. Esener, A. A. et al.: Biotech. Bioeng. 23, 1851 (1981)

    Google Scholar 

  122. Bajpai, R. K. et al.: ibid. 23, 717 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Yamanè, T., Shimizu, S. (1984). Fed-batch techniques in microbial processes. In: Bioprocess Parameter Control. Advances in Biochemical Engineering/Biotechnology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006382

Download citation

  • DOI: https://doi.org/10.1007/BFb0006382

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13539-5

  • Online ISBN: 978-3-540-39004-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics