Skip to main content
Log in

CO Hydrogenation to Light Alkenes Over Mn/Fe Catalysts Prepared by Coprecipitation and Sol-gel Methods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

CO hydrogenation to light alkenes was carried out on manganese promoted iron catalysts prepared by coprecipitation and sol-gel techniques. Addition of manganese in the range of 1–4 mol.% by means of coprecipitation could improve notably the percentage of C =2 ~C =4 in the products, but it was not so efficient when the sol-gel method was employed. XRD and H2-TPR measurements showed that the catalyst samples giving high C =2 ~C =4 yields possessed ultrafine particles in the form of pure α-(Fe1-xMn x )2O3, and high quality in lowering the reduction temperature of the iron oxide. Furthermore, these samples displayed deep extent of carburization and different surface procedures to the others in the tests of Temperature Programmed Surface Carburization (TPSC). The different surface procedures of these samples were considered to have close relationship with the evolving of surface oxygen. It was also suggested that for the catalysts with high C =2 ~C =4 yields, the turnover rate of the active site could be kept at a relatively high level due to the improved reducing and carburizing capabilities. Consequently, there would be a large number of sites for CO adsorption/dissociation and an enhanced carburization environment on the catalyst surface, so that the process of hydrogenation could be suppressed relatively to a low level. As a result, the percentage of the light alkenes in the products could be raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Flory (1936) J. Am. Chem. Soc. 58 1877

    Google Scholar 

  2. R. Snel (1987) Catal. Rev. Sci. Eng. 29 361

    Google Scholar 

  3. B. Bussemeier C.C. Frohning B. Cornils (1976) Hydrocarbon Process 55 IssueID11 101

    Google Scholar 

  4. M. Janardanarao (1990) Ind. Eng. Chem. Res. 29 1735

    Google Scholar 

  5. D. Das G. Ravichandran D.K. Chakrabarty (1997) Catal. Today 36 285

    Google Scholar 

  6. U. Lüchner H. Papp M. Baerns (1986) Appl. Catal. 23 339

    Google Scholar 

  7. J. Barrault C. Forquy V. Perrichon (1983) Appl. Catal. 5 119

    Google Scholar 

  8. R. Malessa M. Baerns (1988) Ind. Eng. Chem. Res. 27 279

    Google Scholar 

  9. L.Y. Xu Q.X. Wang Y.D. Xu J.S. Huang (1995) Catal. Lett. 31 253

    Google Scholar 

  10. J. Venter M. Kaminsky G.L. Geoffroy M.A. Vannice (1987) J. Catal. 105 155

    Google Scholar 

  11. W.L. Dijk Particlevan J.W. Niemantsverdriet A.M. Kraan Particlevan der H.S. Baan Particlevan der (1982) Appl. Catal. 2 273

    Google Scholar 

  12. C.N. Satterfield H.G. Stenger (1984) Ind. Eng. Chem. Process Des. Dev. 23 26

    Google Scholar 

  13. S. Li R.J. O’Brien G.D. Meitzner H. Hamdehd B.H. Davis E. Iglesia (2001) Appl. Catal. A 219 215

    Google Scholar 

  14. S. Li G.D. Meitzner E. Iglesia (2001) J. Phys. Chem. B 105 5743

    Google Scholar 

  15. S. Li W. Ding G.D. Meitzner E. Iglesia (2002) J. Phys. Chem. B 106 85

    Google Scholar 

  16. W.X. Kuang Y.N. Fan Y. Chen (1999) J. Colloid Interface Sci. 215 364

    Google Scholar 

  17. L.G. Alfonso F. Bernardo R. Fulgencio M. Juan C. Rodrigo (1999) Appl. Catal. A 177 193

    Google Scholar 

  18. G.C. Maiti R. Malessa U. Lüchner H. Papp M. Baerns (1985) Appl. Catal. 16 215

    Google Scholar 

  19. N.K. Jaggi L.H. Schwartz J.B. Butt H. Papp M. Baerns (1985) Appl. Catal. 13 347

    Google Scholar 

  20. G.C. Maiti R. Malessa M. Baerns (1983) Appl. Catal. 5 151

    Google Scholar 

  21. T. Grzybek H. Papp M. Baerns (1987) Appl. Catal. 29 335

    Google Scholar 

  22. I.R. Leith M.G. Howden (1988) Appl. Catal. 37 75

    Google Scholar 

  23. E.R. Stobbe B.A. Boer Particlede J.W. Geus (1999) Catal. Today 47 161

    Google Scholar 

  24. J. Heon J.T. William (1992) J. Catal. 134 654

    Google Scholar 

  25. A.G. Sault A.K. Datye (1993) J. Catal. 140 136

    Google Scholar 

  26. D.B. Bukur K. Okabe M.P. Rosynek C.P. Li D.J. Wang K.R.P.M. Rao G.P. Huffman (1995) J. Catal. 155 353

    Google Scholar 

  27. M.E. Dry G.J. Oosthuizen (1968) J. Catal. 11 18

    Google Scholar 

  28. K.B. Jensen F.E. Massoth (1985) J. Catal. 92 98

    Google Scholar 

  29. G. Broyden T.N. Rhodin D.F. Brucker R. Benbow Z. Hurych (1976) Surf. Sci. 59 593

    Google Scholar 

  30. J.W. Niemantsverdriet A.M. Kraan Particlevan der W.L. DiJk Particlevan H.S. Baan Particlevan der (1980) J. Phys. Chem. 84 3363

    Google Scholar 

  31. J.W. Niemantsverdriet A.M. Kraan Particlevan der (1981) J. Catal. 72 385

    Google Scholar 

  32. D.J. Dwyer J.H. Hardenbergh (1984) J. Catal. 87 66

    Google Scholar 

  33. H.P. Bonzel H.J. Krebs (1982) Surf. Sci. 117 639

    Google Scholar 

  34. R. Kapoor S.T. Oyama (1997) J. Mater. Res. 12 IssueID2 467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longya Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, Q., Sun, X. et al. CO Hydrogenation to Light Alkenes Over Mn/Fe Catalysts Prepared by Coprecipitation and Sol-gel Methods. Catal Lett 105, 93–101 (2005). https://doi.org/10.1007/s10562-005-8011-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-8011-3

Keywords

Navigation