Skip to main content
Log in

Enhanced Ru/Alumina catalyst via the adsorption-precipitation (AP) method for the hydrogenation of dimethyl maleate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Two methods, incipient wetness impregnation (IM) and adsorption-precipitation (AP) were used to prepare alumina-supported Ru catalysts. Using the selective hydrogenation of dimethyl maleate as a probe reaction, the obtained results demonstrated an enhanced catalytic activity with the AP method as compared to the IM technique. It was also found that higher hydrogenation activity was obtained with samples that were directly activated in H2 flow. In contrast, the activity decreased seriously when the catalyst samples were subjected to a calcination pretreatment prior to activation with H2 reduction, especially for the IM technique. Additional catalytic testings on Ru/Al(AP)-R with chlorine addition demonstrated that the catalytic activity was greatly decreased, suggesting that chlorine has a negative effect on the hydrogenation behaviors of Ru. Combined with the characterization results of XRD, H2-TPR, H2-TPD and XPS, the advantage of the AP method can be summarized as the following: this technique effectively eliminates chlorine, thus resulting in a better dispersion of Ru species and decreasing the negative influence of chlorine on Ru. A superior Ru/alumina catalyst can be obtained with the AP followed by direct activation with H2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rodriguez E, Leconte M, Basset JM (1991) J Catal 131:457–481

    Article  CAS  Google Scholar 

  2. Milone C, Neri G, Donato A, Musolino MG, Mercadante L (1996) J Catal 159:253–258

    Article  CAS  Google Scholar 

  3. Mazzieri V, Coloma-Pascual F, Arcoya A, L’Argentière PC, Goli NS (2003) Appl Surf Sci 210:222–230

    Article  CAS  Google Scholar 

  4. Pietrowski M, Zielinski M, Wojciechowska M (2009) Catal Lett 128:31–35

    Article  CAS  Google Scholar 

  5. Nandanwar SU, Chakraborty M, Mukhopadhyay S, Shenoy KT (2013) Reac Kinet Mech Cat 108:473–489

    Article  CAS  Google Scholar 

  6. Claeys M, Steen E (2002) Catal Today 71:419–427

    Article  CAS  Google Scholar 

  7. Hellman A, Honkala K, Remediakis IN, Logadóttir Á, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2009) Surf Sci 603:1731–1739

    Article  CAS  Google Scholar 

  8. Panagiotopoulou P, Kondarides DI, Verykios XE (2009) Appl Catal B-Environ 88:470–478

    Article  CAS  Google Scholar 

  9. Jimenez V, Sanchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Appl Catal A-Gen 390:35–44

    Article  CAS  Google Scholar 

  10. Echeverri DA, Marín JM, Restrepo GM, Rios LA (2009) Appl Catal A-Gen 366:342–347

    Article  CAS  Google Scholar 

  11. Sanchez MA, Mazzierim VA, Sad MR, Pieck CL (2012) Reac Kinet Mech Cat 107:127–139

    Article  CAS  Google Scholar 

  12. Narita T, Miura H, Ohira M, Hondou H, Sugiyama K, Matsuda T, Gonzalez RD (1987) Appl Catal 32:185–190

    Article  CAS  Google Scholar 

  13. Murata S, Aika KI (1992) J Catal 136:110–117

    Article  CAS  Google Scholar 

  14. Lin B, Wang R, Lin J, Ni J, Wei K (2011) Catal Commun 12:1452–1457

    Article  CAS  Google Scholar 

  15. Iyagba ET, Eddy Hoost T, Nwalor JU, Goodwin JG (1990) J Catal 123:1–11

    Article  CAS  Google Scholar 

  16. Zeng HS, Inazu K, Aika K (2001) Appl Catal A-Gen 219:235–247

    Article  CAS  Google Scholar 

  17. Bachiller-Baeza B, Guerrero-Ruíz A, Rodríguez-Ramos I (2005) J Catal 229:439–445

    Article  CAS  Google Scholar 

  18. Tian P, Blanchard J, Fajerwerg K, Breysse M, Vrinat M, Liu Z (2003) Micropor Mesopor Mater 60:197–206

    Article  CAS  Google Scholar 

  19. Eliche-Quesada D, Mérida-Robles JM, Rodríguez-Castellón E, Jiménez-López A (2005) Appl Catal A 279:209–221

    Article  CAS  Google Scholar 

  20. Da Costa Zonetti P, Landers R, Cobo AJG (2008) Appl Surf Sci 254:6849–6853

    Google Scholar 

  21. Abudukelimu N, Xi HJ, Qing SJ, Ma YB, Gao ZX, Wumanjiang E (2012) Asian J Chem 24:5341–5345

    CAS  Google Scholar 

  22. Betancourt P, Rives A, Hubaut R, Scott CE, Goldwasser J (1998) Appl Catal A 170:307–314

    Article  CAS  Google Scholar 

  23. Duvigneaud PH, Reinhard-Derie D (1981) Thermochim Acta 51:307–314

    Article  CAS  Google Scholar 

  24. Wang X, Ni J, Lin B, Wang R, Lin J, Wei K (2010) Catal Commun 12:251–254

    Article  CAS  Google Scholar 

  25. Mazzieri VA, L’Argentière PC, Coloma-Pascual F, Fígoli NS (2003) Ind Eng Chem Res 42:2269–2272

    Article  CAS  Google Scholar 

  26. Yao H, Yao YF (1984) J Catal 86:254–265

    Article  CAS  Google Scholar 

  27. Koopman PG, Kieboom PG, Bekkum H (1981) J Catal 69:172–179

    Article  CAS  Google Scholar 

  28. Reyes P, König ME, Pecchig G, Granados ML, Fierro JLG (1997) Catal Lett 46:71–75

    Article  CAS  Google Scholar 

  29. Lin HY, Chen YW (2004) Thermochim Acta 419:283–290

    Article  CAS  Google Scholar 

  30. Panagiotopoulou P, Kondarides DI (2009) J Catal 267:57–66

    Article  CAS  Google Scholar 

  31. Luo LT, Li SJ, Zhu Y (2005) J Serb Chem Soc 70:1419–1425

    Google Scholar 

  32. Damyanova S, Daza L, Fierro J (1996) J Catal 159:150–161

    Article  CAS  Google Scholar 

  33. Bernas A, Kumar N, Laukkanen P, Vayrynen J, Salmi T, Murzin DY (2004) Appl Catal A 267:121–133

    Article  CAS  Google Scholar 

  34. Lu K, Tatarchuk BJ (1987) J Catal 106:176–187

    Article  CAS  Google Scholar 

  35. Lu K, Tatarchuk BJ (1987) J Catal 106:166–175

    Article  CAS  Google Scholar 

  36. Nawdali M, Bianchi D (2002) Appl Catal A 231:45–54

    Article  CAS  Google Scholar 

  37. Lin B, Wang R, Lin J, Ni J, Wei K (2011) Catal Lett 141:1557–1568

    Article  CAS  Google Scholar 

  38. Han L, Mao D, Yu J, Guo Q, Lu G (2012) Catal Commun 23:20–24

    Article  CAS  Google Scholar 

  39. Luo H, Zhang W, Zhou H, Huang S, Lin P, Ding Y, Lin L (2001) Appl Catal A 214:161–166

    Article  CAS  Google Scholar 

  40. Bossi A, Garbassi F, Orlandi A, Petrini G, Zanderighi L (1977) Preparation of Catalysts II: Scientific Bases for the Preparation of Heterogeneous Catalysts 405

  41. Briggs D, Search MP (1993) Practical surface analysis, vol 1, 2nd edn. Willey and Sons, Chichester

    Google Scholar 

  42. Lin B, Wang R, Lin J, Ni J, Wei K (2011) Catal Commun 12:553–558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Abudukelimu, N., Ma, Y. et al. Enhanced Ru/Alumina catalyst via the adsorption-precipitation (AP) method for the hydrogenation of dimethyl maleate. Reac Kinet Mech Cat 112, 117–129 (2014). https://doi.org/10.1007/s11144-014-0680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0680-8

Keywords

Navigation