Skip to main content
Log in

Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Mesoporous manganese oxide nanoparticles with the phases of tetragonal hausmannite, mixture of hausmannite Mn3O4 and monoclinic Mn5O8, and bixbyite Mn2O3 have been prepared by calcination of manganese acetate hydrate precursor at 200, 300, 400 and 700 °C, all of which were found to be active for the catalytic total oxidation of toluene. Their catalytic behavior depended on the oxidation state of manganese, the oxygen mobility and the amount of surface adsorbed oxygen species. The mesoporous nanoparticles calcined at 400 °C exhibited the highest catalytic performance with the complete toluene conversion temperature of 275 °C, suggesting that incorporating Mn5O8 into Mn3O4 could promote oxygen mobility, increase the amount of surface adsorbed oxygen and facilitate the activation of surface oxygen for the oxidation of toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tidahy HL, Siffert S, Lamonier JF, Zhilinskaya EA, Aboukaïs A, Yuan ZY, Vantomme A, Su BL, Canet X, De Weireld G, Frère M, Guyen TBŃ, Giraudon JM, Leclercq G (2006) Appl Catal A 310:61–69

    Article  CAS  Google Scholar 

  2. Carpentier J, Lamonier JF, Siffert S, Zhilinskaya EA, Aboukaïs A (2002) Appl Catal A 234:91–101

    Article  CAS  Google Scholar 

  3. Ferrandon M, Björnbom E (2001) J Catal 200:148–159

    Article  CAS  Google Scholar 

  4. Okumura K, Kobayashi T, Tanaka H, Niwa M (2003) Appl Catal B 44:325–331

    Article  CAS  Google Scholar 

  5. Okumura K, Tanaka H, Niwa M (1999) Catal Lett 58:43–45

    Article  CAS  Google Scholar 

  6. Larsson PO, Andersson A, Wallenberg LR, Svensson B (1996) J Catal 163:279–293

    Article  CAS  Google Scholar 

  7. Labaki M, Siffert S, Lamonier JF, Zhiliskaya EA, Aboukaïs A (2003) Appl Catal B 43:261–271

    Article  CAS  Google Scholar 

  8. Li WB, Chu WB, Zhuang M, Hua J (2004) Catal Today 93–95:205–209

    Article  Google Scholar 

  9. Kim SC (2002) J Hazard Mater 91:285–299

    Article  CAS  Google Scholar 

  10. Li WB, Zhuang M, Xiao TC, Green MLH (2006) J Phys Chem B 110:21568–21571

    Article  CAS  Google Scholar 

  11. Chang Y, McCarty JG (1996) Catal Today 30:163–170

    Article  CAS  Google Scholar 

  12. Stobbe ER, de Boer BA, Geus JW (1999) Catal Today 47:161–167

    Article  CAS  Google Scholar 

  13. Kim SC, Shim WG (2010) Appl Catal B 98:180–185

    Article  CAS  Google Scholar 

  14. Delimaris D, Ioannides T (2008) Appl Catal B 84:303–312

    Article  CAS  Google Scholar 

  15. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2009) Top Catal 52:470–480

    Article  CAS  Google Scholar 

  16. Aguero FN, Scian A, Barbero BP, Cadus LE (2009) Catal Lett 128:268–280

    Article  CAS  Google Scholar 

  17. Parida KM, Samal A (1999) Appl Catal A 182:249–256

    Article  CAS  Google Scholar 

  18. Finocchio E, Busca G (2001) Catal Today 70:213–225

    Article  CAS  Google Scholar 

  19. Luo J, Zhang Q, Huang A, Suib SL (2000) Microporous Mesoporous Mater 35–36:209–217

    Article  Google Scholar 

  20. Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X (1998) J Catal 178:214–225

    Article  CAS  Google Scholar 

  21. Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261–269

    Article  CAS  Google Scholar 

  22. Gandhe AR, Rebello JS, Figueiredo JL, Fernandes JB (2007) Appl Catal B 72:129–135

    Article  CAS  Google Scholar 

  23. Yuan ZY, Ren TZ, Du GH, Su BL (2004) Chem Phys Lett 389:83–86

    Article  CAS  Google Scholar 

  24. Yuan ZY, Ren TZ, Du GH, Su BL (2005) Appl Phys A 80:743–747

    Article  CAS  Google Scholar 

  25. Du GH, Yuan ZY, Van Tendeloo G (2005) Appl Phys Lett 86:063113

    Article  Google Scholar 

  26. Billik P, Čaplovičová M, Janata J, Fajnor VŠ (2008) Mater Lett 62:1052–1054

    Article  CAS  Google Scholar 

  27. Yu T, Moon J, Park J, Park YI, Na HB, Kim BH, Song IC, Moon WK, Hyeon T (2009) Chem Mater 21:2272–2279

    Article  CAS  Google Scholar 

  28. Cheng FY, Zhao JZ, Song W, Li CS, Ma H, Chen J, Shen PW (2006) Inorg Chem 45:2038–2044

    Article  CAS  Google Scholar 

  29. Pan L, Pu L, Shi Y, Song S, Xu Z, Zhang R, Zheng Y (2007) Adv Mater 19:461–464

    Article  CAS  Google Scholar 

  30. Zhang LC, Liu ZH, Lv H, Tang XH, Ooi K (2007) J Phys Chem C 111:8418–8423

    Article  CAS  Google Scholar 

  31. Ren TZ, Yuan ZY, Hu WK, Zou XD (2008) Microporous Mesoporous Mater 112:467–473

    Article  CAS  Google Scholar 

  32. Jiao F, Harrison A, Hill AH, Bruce PG (2007) Adv Mater 19:4063–4066

    Article  CAS  Google Scholar 

  33. Malik AS, Duncan MJ, Bruce PG (2003) J Mater Chem 13:2123–2126

    Article  CAS  Google Scholar 

  34. Xue LG, Hao H, Wei Z, Huang T, Yu AS (2011) J Solid State Electrochem 15:485–491

    Article  CAS  Google Scholar 

  35. Toberer ES, Schladt TD, Seshadri R (2006) J Am Chem Soc 128:1462–1463

    Article  CAS  Google Scholar 

  36. Pike J, Hanson J, Zhang LH, Chan SW (2007) Chem Mater 19:5609–5616

    Article  CAS  Google Scholar 

  37. Macstre JB, López EF, Gallardo-Amores JM, Casero RR, Escribano VS, Bernal EP (2001) Int J Inorg Mater 3:889–899

    Article  CAS  Google Scholar 

  38. Yuan ZY, Ren TZ, Vantomme A, Su BL (2004) Chem Mater 16:5096–5106

    Article  CAS  Google Scholar 

  39. Cao JL, Shao GS, Wang Y, Liu YP, Yuan ZY (2008) Catal Commun 9:2555–2559

    Article  CAS  Google Scholar 

  40. Mirzaei AA, Shaterian HR, Habibi M, Hutchings GJ, Taylor SH (2003) Appl Catal A 253:499–508

    Article  CAS  Google Scholar 

  41. Dula R, Janik R, Machej T, Stoch J, Grabowski R, Serwicka EM (2007) Catal Today 119:327–331

    Article  CAS  Google Scholar 

  42. Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164

    Article  CAS  Google Scholar 

  43. Wang XY, Kang Q, Li D (2009) Appl Catal B 86:166–175

    Article  CAS  Google Scholar 

  44. Tu YB, Meng M, Sun ZS, Zhang LJ, Ding T, Zhang TY (2012) Fuel Process Technol 93:78–84

    Article  CAS  Google Scholar 

  45. Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Chem Mater 19:2269–2276

    Article  CAS  Google Scholar 

  46. Agula B, Deng QF, Jia ML, Liu YP, Zhaorugetu B, Yuan ZY (2011) React Kinet Mech Catal 103:101–112

    Article  Google Scholar 

  47. Sinha AK, Suzuki K (2007) Appl Catal B 70:417–422

    Article  CAS  Google Scholar 

  48. Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Appl Catal B 103:143–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20973096 and 21076056), the National Basic Research Program of China (2009CB623502), the Key Project of Chinese Ministry of Education (2100016), the Specialized Research Fund for the Doctoral Program of Higher Education (20091317120005, 20110031110016), and the 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, QF., Ren, TZ. & Yuan, ZY. Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. Reac Kinet Mech Cat 108, 507–518 (2013). https://doi.org/10.1007/s11144-012-0528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0528-z

Keywords

Navigation