Skip to main content
Log in

Photocatalytic degradation of chlorpyrifos in aqueous suspensions using nanocrystals of ZnO and TiO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of an organophosphorus insecticide chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2 pyridyl phosphorothioate) in aqueous suspensions of nano ZnO and nano TiO2 under sunlight is reported in this study. Nanocrystals of ZnO (34.3 nm) were prepared by the wet chemical method and TiO2 nanocyrstals (7.5 nm) were synthesized from titanium tetraisopropoxide by hydrolysis and peptization. The synthesized nanocrystals were characterized by X-ray diffraction, FT-IR, SEM–EDS and UV–Visible analytical techniques. The degradation of the insecticide was studied by monitoring the change in substrate concentration employing UV–Visible spectroscopy. The influence of catalyst loading, substrate concentration and pH were studied. The intermediates of the degradation process were identified by GC–MS. The synthesized nano ZnO and nano TiO2 demonstrated high photocatalytic activity under solar light. The results show that nanocrystals of TiO2 exhibit a better photocatalytic activity on the degradation of Chlorpyrifos than nanocrystals of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Bagobaty RK, Malik A (2008) Utilization of chlorpyrifos as a sole source of carbon by bacteria isolated from wastewater irrigated agricultural soils in an industrial area of western Uttar Pradesh, India. Res J Microbiol 3:293

    Article  Google Scholar 

  2. Cho CM, Mulchandani A, Chen W (2002) Bacterial cell surface display of organophosphorous hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68:2026

    Article  CAS  Google Scholar 

  3. Harada K, Hisanaga T, Tanaka K (1987) Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. New J Chem 11:597

    CAS  Google Scholar 

  4. Devi LG, Murthy BN, Kumar SG (2009) Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light. J Mol Catal A 308:174

    Article  CAS  Google Scholar 

  5. Burrows HD, Canle LM, Santabella JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B 67:71

    Article  CAS  Google Scholar 

  6. Di-shun Z, Jia-lei W, Xue-heng Z, Juan Z (2009) TiO2/NaY composites as photocatalyst for degradation of O-methoate. Chem Res Chin Univ 25:543

    Google Scholar 

  7. Abhijit V (2005) Advanced oxidation process. Res Chem Intermed 33:359

    Google Scholar 

  8. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogenous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C 7:127

    Article  CAS  Google Scholar 

  9. De lasa H, Serrano B, Salaices M (2006) Photocatalytic reaction engineering. Springer, New York

    Google Scholar 

  10. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33

    Article  CAS  Google Scholar 

  11. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683

    Article  CAS  Google Scholar 

  12. Michaelis E, Wohrie D, Rathousky J, Wark M (2006) Electrodeposition of porous zinc oxide electrodes in the presence of sodium lauryl sulfate. Thin Solid Films 497:163

    Article  CAS  Google Scholar 

  13. Herman JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115

    Article  Google Scholar 

  14. Irie H, Maruyama Y, Hashimoto K (2007) Ag+- and Pb2+-doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity. J Phys Chem C 111:1847

    Article  CAS  Google Scholar 

  15. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269

    Article  CAS  Google Scholar 

  16. Borgarello E, Kiwi J, Graetzel M, Pelezzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996

    Article  CAS  Google Scholar 

  17. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A 161:205

    Article  CAS  Google Scholar 

  18. Anwar NS, Kassim A, Lim HN, Zakarya SA, Huang NM (2010) Synthesis of titanium dioxide microstructures via sucrose ester microemulsion-mediated hydrothermal method. Sains Malays 39:261

    CAS  Google Scholar 

  19. Pelentridou K, Stathatos E, Karasali H, Dionysiou DD, Lianos P (2008) Photocatalytic degradation of a water soluble herbicide by pure and noble metal deposited TiO2 nanocrystalline films. Int J Photoenergy 2008:7

    Article  Google Scholar 

  20. Kanchanatip E, Grisdanurak N, Thongruang R, Neramittagapong A (2011) Degradation of paraquat under visible light over fullerene modified V-TiO2. React Kinet Mech Catal 103:227

    Article  CAS  Google Scholar 

  21. Mahshid S, Sari MSG, Askari M, Afshar N, Lahuti S (2006) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Semicond Phys Quantum Electron Optoelectron 9:65

    CAS  Google Scholar 

  22. Faal Hamedeani N, Farzaneh F (2006) Synthesis of ZnO nanocrystals with hexagonal (wurtzite) structure in water using microwave irradiation. J Sci Islam Repub Iran 17:231

    Google Scholar 

  23. Behnajady MA, Modirshahla N, Shokri M, Rad B (2008) Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods. Glob NEST J 10:1

    Google Scholar 

  24. Li B, Wang X, Yan M, Li L (2002) Preparation and characterization of nano-TiO2 powder. Mater Chem Phys 78:184

    Article  CAS  Google Scholar 

  25. Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Structure evaluation and highly enhanced luminescence of Dy3+-Doped ZnO nanocrystals by Li+ doping via combustion method. Langmuir 20:3528

    Article  CAS  Google Scholar 

  26. Haque MM, Muneer M (2005) Photocatalytic degradation of fungicide thiram in aqueous dispersion of TiO2. Indian J Chem Tech 12:68

    CAS  Google Scholar 

  27. Murillo R, Sarasa J, Lanao M, Ovelleiro JL (2010) Degradation of chlorpyrifos in water by advanced oxidation processes. Water Sci Technol 10:1

    Article  CAS  Google Scholar 

  28. Toor AP, Verma A, Jotshi CK, Bajpai PK, Singh V (2005) Photocatalytic degradation of 3,4-dichlorophenol using TiO2 in a shallow pond slurry reactor. Indian J Chem Technol 12:75

    CAS  Google Scholar 

  29. Gupta H, Tanaka S (1995) Photocatalytic mineralization of perchloroethylene using titanium dioxide. Water Sci Technol 31:47

    CAS  Google Scholar 

  30. Wu G, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water. Water Res 35:3927

    Article  CAS  Google Scholar 

  31. Bojinova A, Dushkin C (2011) Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light. React Kinet Mech Catal 103:239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors V. Gnana Glory Kanmoni acknowledges to UGC, India for financial support through FDP of 11th plan to do the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gnana Glory Kanmoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanmoni, V.G.G., Daniel, S. & Raj, G.A.G. Photocatalytic degradation of chlorpyrifos in aqueous suspensions using nanocrystals of ZnO and TiO2 . Reac Kinet Mech Cat 106, 325–339 (2012). https://doi.org/10.1007/s11144-012-0433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0433-5

Keywords

Navigation