Skip to main content
Log in

Catalytic and physicochemical characterization of the MnVOx system. Influence of vanadium on methanol oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Manganese and mixed vanadium oxides were prepared by the hydrolysis of acetylacetonates. They were characterized by different techniques, such as X-ray diffraction, XPS, temperature-programmed surface reaction (TPSR), and conversion and selectivity measurements. TPSR studies showed that H2O, CO2, and O2 are present in manganese oxide samples and that the ones containing vanadium desorb CO2, H2O, methanol, formaldehyde, O2. The vanadium-free catalysts and the ones with a lower vanadium content also exhibit high methanol conversion and selectivity to CO2 at higher temperatures. The selectivity to dimethyl ether is important in the catalyst without V at lower temperature. The greatest conversion at lower temperatures and the highest selectivities to CO2 are achieved with the catalysts having the highest vanadium content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Romanyshyn Y, Guimond S, Kuhlenbeck H, Kaya S, Blum R, Niehus H, Shaikhutdinov S, Simic-Milosevic V, Nilius V, Freund H, Ganduglia-Pirovano M, Fortrie R, Dobler J, Sauer J (2008) Top Catal 50:106–115

    Article  CAS  Google Scholar 

  2. Liu J, Fu Y, Sun Q, Shen J (2008) Micropor Mesopor Mater 116:614–621

    Article  CAS  Google Scholar 

  3. Gimeno M, Gascón J, Téllez C, Herguido J, Menéndez M (2008) Chem Eng Process 47:1844–1852

    Article  CAS  Google Scholar 

  4. Hetrick C, Patcas F, Amiridis M (2011) Appl Catal B 101:622–628

    Article  CAS  Google Scholar 

  5. Gambaro L (2004) J Mol Catal A 214:287–294

    Article  CAS  Google Scholar 

  6. Barrio L, Legorburu I, Montes M, Domínguez M, Centeno M, Odriozola J (2005) Catal Lett 101:151–158

    Article  CAS  Google Scholar 

  7. Santos V, Pereira M, Órfão M, Figueiredo J (2010) Appl Catal B 99:353–363

    Article  CAS  Google Scholar 

  8. Peluso M, Gambaro L, Pronsato E, Gazzoli D, Thomas H, Sambeth J (2008) Catal Today 133–135:487–492

    Article  Google Scholar 

  9. Lamaita L, Peluso M, Sambeth J, Thomas H (2005) Appl Catal B 61:114–119

    Article  CAS  Google Scholar 

  10. Aguero F, Barbero B, Costa AL, Montes M, Cadús L (2011) Chem Eng J 166:218–223

    Google Scholar 

  11. Nagirnyi V, Apostolova R, Baskevich A, Litvin P, Shembel E (2002) Russ J Appl Chem 75:552–557

    Article  CAS  Google Scholar 

  12. Dobley A, Ngala K, Yang S, Zavalij P, Whittingham M (2001) Chem Mater 11:382–4386

    Google Scholar 

  13. Liu P, Zhang J, Turner J (2001) J Power Sources 92:204–211

    Article  CAS  Google Scholar 

  14. Hara D, Shirakawa J, Ikuta H, Uchimoto Y, Wakihara M, Miyanaga T, Watanabe I (2002) J Mater Chem 12:3717–3722

    Article  CAS  Google Scholar 

  15. Briand L, Jehng J, Cornaglia L, Hirt A, Wachs I (2003) Catal Today 78:257–268

    Article  CAS  Google Scholar 

  16. Hasan M, Zaki M, Pasupukty L, Kumari K (1999) Appl Catal 181:171–179

    Article  CAS  Google Scholar 

  17. Deraz N-A (2004) Thermochim Acta 421:171–177

    Article  CAS  Google Scholar 

  18. Donia A, Radwan N, Atia A (2000) J Therm Anal Calorim 61:249–261

    Article  CAS  Google Scholar 

  19. Polverejan M, Villegas J, Suib S (2004) J Am Chem Soc 126:7774–7775

    Article  CAS  Google Scholar 

  20. Gac W (2007) Appl Catal B 75:107–117

    Article  CAS  Google Scholar 

  21. Iablokov V, Frey K, Geszti O, Kruse N (2010) Catal Lett 134:210–216

    Article  CAS  Google Scholar 

  22. Peluso M, Sambeth J, Thomas H (2003) React Kinet Catal Lett 80:241–247

    Article  CAS  Google Scholar 

  23. Lahousse C, Bernier A, Gaigneaux E, Ruiz P, Grange P, Delmon B (1997) Catal 110:777–785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Sambeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curia, V., Sambeth, J. & Gambaro, L. Catalytic and physicochemical characterization of the MnVOx system. Influence of vanadium on methanol oxidation. Reac Kinet Mech Cat 106, 165–176 (2012). https://doi.org/10.1007/s11144-012-0422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0422-8

Keywords

Navigation