Skip to main content
Log in

Water–gas shift activity of K-promoted (Ni)Mo/γ-Al2O3 systems in sulfur-containing feed

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The effect of potassium additive on the catalytic activity of nickel–molybdenum alumina-supported systems has been studied by varying the molybdenum content within 5–18 mass% MoO3, reaction temperature from 180 to 400 (500)°C, and steam to gas ratio of 0.3, 0.7, and 1. It has been established that potassium reduces the activity of one-component Mo-containing samples, while, independent of molybdenum loading, nickel promotes activity within the whole temperature range studied and extends the temperature range of catalytic activity by about 70°C to lower reaction temperatures. A symbatic or additive, or antibatic catalytic behavior was observed with NiMo-containing samples depending on the atomic Ni/Mo ratio and temperature range. Potassium, being a third component in tri-component KNiMo-containing samples, enhances the water–gas shift (WGS) activity depending on the atomic K/(Ni + Mo) ratio. The activity approaches the equilibrium conversion degree in the interval of 320–500 °C. A decrease in the specific surface area of calcined and tested samples relative to the bare support shows close values indicating that the overall dispersion of the species is not changed during the catalytic test. Close examination indicated that the sample containing K2O, NiO, and MoO3 of 4.9, 2.5, and 12.7 mass%, respectively, was found to be the most suitable catalyst for water–gas shift reaction with sulfur containing feed since it attains equilibrium conversion even at 300 °C, and at a low steam to gas ratio of 0.3 atm. This catalyst demonstrates a stable and reproducible catalytic activity as inlet gas loading is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Newsome DS (1980) The water-gas shift reaction. Catal Rev Sci Eng 21:275–318

    Article  CAS  Google Scholar 

  2. Rhodes C, Hutchings GJ, Ward AM (1995) Water-gas shift reaction: finding the mechanistic boundary. Catal Today 23:43–58

    Article  CAS  Google Scholar 

  3. Lloyd L, Ridler DE, Twigg MV (1996) In: Twigg MV (ed) The water gas shift reaction. Catalyst handbook, 2nd edn. Mansion Publishing House, London, pp 83–338

    Google Scholar 

  4. Kochloefl K. (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Water-gas shift and COS removal. Handbook of heterogeneous catalysis, vol 4. VCH Verlagsgesellschaft mbH, Weinheim, pp 1831–1843

  5. Ratnasamy Ch, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440

    Article  CAS  Google Scholar 

  6. Ruettinger W, Ilinich O, Farrauto RJJ (2003) A new generation of water gas shift catalysts for fuel cell applications. Power Sour 118:61–65

    Article  CAS  Google Scholar 

  7. Stiegel GJ, Ramezan M (2006) Hydrogen from coal gasification: an economical pathway to a sustainable energy future. Int J Coal Geol 65:173–190

    Article  CAS  Google Scholar 

  8. Copperthwaite RG, Gottschalk FM, Sangiorgio T (1990) Cobalt chromium oxide: a novel sulphur tolerant water-gas shift catalyst. Appl Catal 63:L11–L16

    Article  CAS  Google Scholar 

  9. Mellor J, Coville N, Sofianos A, Copperthwaite R (1997) Copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability. Appl Catal A Gen 164:171–183

    Article  CAS  Google Scholar 

  10. Park J-N, Kim J-H, Lee H-I (2000) A study on sulphur-resistant catalysts for water gas shift reaction. III. Modification of Mo/γ-Al2O3 catalyst with iron group metals. Bull Korean Chem Soc 21:1233–1238

    CAS  Google Scholar 

  11. Narendra SR, Weller SW (1988) Water-gas shift kinetics over sulfided catalyst: elevated pressure. In: Proceedings of 9th international congress on catalysis, vol 4, pp 1827–1834

    Google Scholar 

  12. Hakkarainen R, Salmi T (1993) Water-gas shift reaction on a cobalt-molybdenum oxide catalyst. Appl Catal A Gen 99:195–215

    Article  CAS  Google Scholar 

  13. Lund CRF (1996) Effect of adding Co to MoS2/Al2O3 upon the kinetics of the water-gas shift. Ind Eng Chem Res 35:3067–3073

    Article  CAS  Google Scholar 

  14. Lian Y, Wang H, Zheng Q, Fang W, Yang Y (2009) Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3. J Nat Gas Chem 18:161–166

    Article  CAS  Google Scholar 

  15. Lian Y, Wang H, Fang W, Yang Y (2010) Water gas shift activity of Co-Mo/MgO-Al2O3 catalysts presulfided with ammonium sulfide. J Nat Gas Chem 19:61–66

    Article  CAS  Google Scholar 

  16. Kettmann V, Balgavý P, Sokol L (1988) Characterization of a novel K-Co-Mo/Al2O3 water gas shift catalyst. laser raman and infrared studies of oxidic precursors. J Catal 112:93–106

    Article  CAS  Google Scholar 

  17. Wang H, Lian Y, Zhang Q, Li Q, Fang W, Yang Y (2008) MgO–Al2O3 mixed oxides-supported Co–Mo-based catalysts for high-temperature water–gas shift reaction. Catal Lett 126:100–105

    Article  CAS  Google Scholar 

  18. Mityashina TA, Semenova TA, Tagitsev BG, Gorbatscheva NB (1984) Sulphur resistant catalysts for water gas shift reaction. Sb. Voprosi kinetiki i kataliza, Ivanovo, pp 78–82 (in Russian)

  19. Xie X, Yin H, Dou B, Huo (1991) Characterization of a potassium-promoted cobalt-molybdenum/alumina water-gas shift catalyst. J Appl Catal 77:187–198

    Article  CAS  Google Scholar 

  20. Nagai M, Zahidul AM, Kunisaki Y, Aoki Y (2010) Water–gas shift reactions on potassium- and zirconium-promoted cobaltmolybdenum carbide catalysts. Appl Catal A Gen 383:58–65

    Article  CAS  Google Scholar 

  21. Łaniecki M, Malecka-Grycz M, Domka F (2000) Water-gas shift reaction over sulfided molybdenum catalysts. I. Alumina, titania and zirconia-supported catalysts. Appl Catal A Gen 196:293–303

    Article  Google Scholar 

  22. Laniecki M, Ignacik M (2006) Water–gas shift reaction over sulfided molybdenum catalysts supported on TiO2–ZrO2 mixed oxides. Support characterization and catalytic activity. Catal Today 116:400–407

    Article  CAS  Google Scholar 

  23. Kantschewa M, Delannay F, Jeziorowski H, Delgado E, Eder S, Ertl G, Knözinger H (1984) Nature and properties of a potassium-promoted NiMo/Al2O3 water gas shift catalyst. J Catal 87:482–496

    Article  CAS  Google Scholar 

  24. Nickolov RN, Edreva-Kardjieva RM, Kafedjiysky VJ, Nikolova DA, Stankova NB, Mehandjiev DR (2000) Effect of the order of potassium introduction on the texture and activity of Mo/Al2O3 catalysts in water-gas shift reaction. Appl Catal A Gen 190:191–196

    Article  CAS  Google Scholar 

  25. Edreva-Kardjieva RM, Kafedjiysky VJ, Niкolova DA (2000) In: Petrov L, Bonev Ch, Kadinov G (eds) Effect of the deposition order of the active components on (K)(Ni)Mo/Al2O3 catalysts in water-gas shift reaction. Proceedings of the 9th international symposium on heterogeneous catalysis, Varna, Bulgaria, pp 495–500

  26. Edreva-Kardjieva RM, Alexiev VD, Nikolova DA, Gabrovska MV, Grozeva TP (2002) Comparative study of alkali and nickel depozited on and intercalated in MoS2: structure and catalytic activity in water-gas shift reaction. Bulg Chem Commun 34:461–468

    CAS  Google Scholar 

  27. Nikolova D, Edreva-Kardjieva R, Gouliev G, Grozeva T, Tzvetkov P (2006) The state of (K)(Ni)Mo/γ-Al2O3 catalysts after water-gas shift reaction in the presence of sulphur in the feed: XPS and EPR study. Appl Catal A Gen 297:135–144

    Article  CAS  Google Scholar 

  28. Nikolova D, Edreva-Kardjieva R, Giurginca M, Meghea A, Vakros J, Voyiatzis GA, Kordulis Ch (2007) The effect of potassium addition on the state of the components in the oxide precursor of the (Ni)(Mo)/γ-Al2O3 water-gas shift catalysts: FT-IR, diffuse reflectance and raman spectroscopic studies. Vib Spectrosc 44:343–350

    Article  CAS  Google Scholar 

  29. Giordano N, Bart JCJ, Vaghi A, Castellan A, Martinotti G (1975) Structure and catalytic activity of MoO3-Al2O3 systems I. Solid-state properties of oxidized catalysts. J Catal 36:81–92

    Article  CAS  Google Scholar 

  30. Zingg DS, Makovsky LE, Tischer RE, Brown FR, Hercules DM (1980) Raman spectroscopic study of Co-Mo/γ-Al2O3 catalysts. J Phys Chem 84:2898–2906

    Article  CAS  Google Scholar 

  31. Kordulis Ch, Voliotis S, Lycourghiotis A (1982) Molybdena catalysts prepared on modified carriers: regulation of the symmetry and valence of the molybdenum species formed on γ-Al2O3 modified with alkali cations. J Less-Common Met 84:187–200

    Article  CAS  Google Scholar 

  32. Nikolova D, Grozeva T, Edreva-Kardjieva R (2002) Effect of K on the catalytic activity of NiO/Al2O3 for water gas shift reaction in H2S presence. Bulg Chem Commun 34:445–453

    CAS  Google Scholar 

  33. Hou P, Meerer D, Wise H (1983) Kinetic studies with a sulphur-tolerant water gas shift catalyst. J Catal 80:280–285

    Article  CAS  Google Scholar 

  34. Lund CRF (1996) Microkinetics of water-gas shift over Mo/Al2O3 catalysts. Ind Eng Chem Res 35:2531–2538

    Article  CAS  Google Scholar 

  35. Jiang M, Bian G-Z, Fu Y-L (1994) Effect of the K-Mo interaction in K-MoO3/γ-Al2O3 catalysts on the properties for alcohol synthesis from syngas. J Catal 146:144–154

    Article  CAS  Google Scholar 

  36. Kantschewa M, Albano EV, Ertl G, Knözinger H (1983) Infrared and x-ray photoelectron spectroscopy study of K2CO3/γ-Al2O3. Appl Catal 8:71–84

    Article  CAS  Google Scholar 

  37. Amenomiya Y, Pleizier G (1982) Alkali-promoted alumina catalysts. II. Water-gas shift reaction. J Catal 76:345–353

    Article  CAS  Google Scholar 

  38. Stoica G, Groen JC, Abello S, Manchanda R, Perez-Ramirez (2008) Reconstruction of dawsonite by alumina carbonation in (NH4)2CO3: requisites and mechanism. J Chem Mater 20:3973–3982

    Article  CAS  Google Scholar 

  39. Walspurger St, Cobden PD, Haije WG, Westerwaal R, Elzinga GD, Safonova OV (2010) In situ XRD detection of reversible dawsonite formation on alkali promoted alumina: a cheap sorbent for CO2 capture. Eur J Inorg Chem 2461–2464

Download references

Acknowledgement

The authors are grateful to the National Science Fund of Bulgaria for partial financial support. Discussion with Dr. P. Atanasova is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrinka Nikolova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolova, D., Edreva-Kardjieva, R. & Grozeva, T. Water–gas shift activity of K-promoted (Ni)Mo/γ-Al2O3 systems in sulfur-containing feed. Reac Kinet Mech Cat 103, 71–86 (2011). https://doi.org/10.1007/s11144-011-0300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0300-9

Keywords

Navigation