Skip to main content
Log in

Obtaining precise constants of atmospheric lines in the millimeter and submillimeter wavelength ranges

  • Published:
Radiophysics and Quantum Electronics Aims and scope

An important physical problem of supplying the Earth's atmosphere satellite monitoring with precise laboratory measurements of the line constants of atmospheric gases has been resolved. We developed a complex of spectrometers and techniques which improves the accuracy of line-constant measurements by about an order of magnitude. Systematic errors of measurements do not exceed the statistical ones. Agreement of the results obtained by two different spectrometers improves reliability of the measured constants. Examples of measurements of collisional constants (broadening, shift, and collisional coupling) for the most important diagnostic atmospheric lines of water and oxygen molecules are presented. A number of collisional constants of the molecules are obtained for the first time and some errors of the previous researchers are corrected. The measured parameters have been used for the international projects. Prospects for supplying planned satellite terahertz projects with precise laboratory data are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Pumphrey and S. Buehler, J. Quant. Spectrosc. Radiat. Transfer, 64, 421 (2000).

    Article  Google Scholar 

  2. A. F. Krupnov, G. Yu. Golubiatnikov, V. N. Markov, et al., J. Mol. Spectrosc., 215, 309 (2002).

    Article  ADS  Google Scholar 

  3. H. M. Pickett, E. A. Cohen, and D. E. Brinza, Astrophys. J., 248, L49 (1981).

    Article  ADS  Google Scholar 

  4. J. Urban, N. Lautie, D. Murtagh, et al., Proc. Int. Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, Ibaraki, Japan (2004), p. 69.

  5. A. F. Krupnov, Vestnik Akad. Nauk SSSR, 7, 18 (1978).

    ADS  Google Scholar 

  6. A. F. Krupnov, M. Yu. Tretyakov, V. V. Parshin, et al., J. Mol. Spectrosc., 202, 107 (2000).

    Article  ADS  Google Scholar 

  7. J. B. Rusk, J. Chem. Phys., 42, 493 (1965).

    Article  ADS  Google Scholar 

  8. Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, et al., Radiophys. Quantum Electron., 9, No. 6, 624 (1966).

    ADS  Google Scholar 

  9. L. Frenkel and D. Woods. Proc. IEEE, 54, 498 (1966).

    Article  Google Scholar 

  10. C. O. Hemmi and A. W. Straiton, Radio Sci., 4, 9 (1969).

    Article  ADS  Google Scholar 

  11. V. Ya. Ryadov and N. I. Furashov, Radiophys. Quantum Electron., 18, No. 3, 256 (1975).

    Article  ADS  Google Scholar 

  12. A. Bauer, M. Godon, and B. Duterage, J. Quant. Spectrosc. Radiat. Transfer, 33, 167 (1985).

    Article  ADS  Google Scholar 

  13. A. Bauer, M. Godon, M. Kheddar, and J. M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer, 41, 49 (1989).

    Article  ADS  Google Scholar 

  14. T. M. Goyette and F. C. De Lucia, J. Mol. Spectrosc., 143, 346 (1990).

    Article  ADS  Google Scholar 

  15. M. Yu. Tretyakov, V. V. Parshin, M. A. Koshelev, et al., J. Mol. Spectrosc., 218, 239 (2003).

    Article  ADS  Google Scholar 

  16. G. Yu. Golubiatnikov, J. Mol. Spectrosc., 230, 196 (2005).

    Article  ADS  Google Scholar 

  17. G. Yu. Golubiatnikov, M. A. Koshelev, and A. F. Krupnov, J. Mol. Spectrosc., 222, 191 (2003).

    Article  ADS  Google Scholar 

  18. M. Yu. Tretyakov, M. A. Koshelev, V. V. Dorovskikh, et al., J. Mol. Spectrosc., 231, 1 (2005).

    Article  ADS  Google Scholar 

  19. G. Yu. Golubiatnikov and A. F. Krupnov, J. Mol. Spectrosc., 217, 282 (2003).

    Article  ADS  Google Scholar 

  20. M. Yu. Tretyakov, G. Yu. Golubiatnikov, V. V. Parshin, et al., J. Mol. Spectrosc., 223, 31 (2004).

    Article  ADS  Google Scholar 

  21. M. A. Koshelev, M. Yu. Tretyakov, G. Yu. Golubiatnikov, et al., J. Mol. Spectrosc., 241, 101 (2007).

    Article  ADS  Google Scholar 

  22. A. E. Schulze and C. W. Tolbert, Nature, 200, 747 (1963).

    Article  ADS  Google Scholar 

  23. H. Liebe, R. W. Rosenkranz, and G. A. Hufford, J. Quant. Spectrosc. Radiat. Transfer, 48, 629 (1992).

    Article  ADS  Google Scholar 

  24. E. W. Smith, J. Chem. Phys., 74, 6658 (1981).

    Article  ADS  Google Scholar 

  25. A. Perrin, C. Puzzarini, J. M. Colmont, et al., J. Atm. Chem., 51, 161 (2005).

    Article  Google Scholar 

  26. L. S. Rothman, N. Jacquinet-Husson, C. Boulet, et al., C. R. Physique, 6, 897 (2005).

    Article  ADS  Google Scholar 

  27. http://eospso.gsfc.nasa.gov/ftp_docs/validation/Cohen_Report_04.pdf.

  28. M. Yu. Tretyakov, V. V. Parshin, M. A. Koshelev, et al., J. Mol. Spectrosc., 238, 91 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Tretyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 9, pp. 789–794, September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretyakov, M.Y., Golubiatnikov, G.Y., Parshin, V.V. et al. Obtaining precise constants of atmospheric lines in the millimeter and submillimeter wavelength ranges. Radiophys Quantum El 51, 713–717 (2008). https://doi.org/10.1007/s11141-008-9074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-008-9074-y

Keywords

Navigation