Skip to main content
Log in

Molecular Line Parameters for the “MASTER” (Millimeter Wave Acquisitions for Stratosphere/Troposphere Exchange Research) Database

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

In order to investigate the upper troposphere/lower stratosphere (UTLS) region of the earth's atmosphere, ESA/ESTEC (European space agency) is considering the opportunity to develop the spaceborne limb sounding millimeter sensor “MASTER” (millimeter wave acquisitions for stratosphere/troposphere exchange research). This instrument is part of the “atmospheric composition explorer for chemistry and climate interactions” (ACECHEM) project. In addition, ESA/ESTEC is developing the “MARSCHALS” (millimeter-wave airborne receiver for spectroscopic characterization of atmospheric limb sounding) airborne instrument which will demonstrate the feasibility of MASTER. The present paper describes the line-by-line database which was generated in order to meet at best the needs of the MASTER (or MARSCHALS) instrument. The linelist involves line positions, line intensities, line broadening and line shift parameters in the 294–305, 316–325, 342–348, 497–506 and 624–626 GHz spectral microwindows. This database was first generated for the target molecules for MASTER (H2O, O3, N2O, CO, O2, HNO3, HCl, ClO, CH3Cl, BrO). In addition, ten additional molecules (SO2, NO2, OCS, H2CO, HOCl, HCN, H2O2, COF2, HO2 and HOBr) had also to be considered in the database as “possible interfering species” for the retrieval of the target molecules of MASTER. The line parameters were derived, depending on their estimated accuracy, (i) from a combination of spectral parameters included in the JPL and HITRAN catalogs (ii) from data taken into the literature or (iii) using data obtained through experimental measurements (and/or) calculations performed during the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano, T., Yoshinaga, A., and Hirota, E., 1972: Microwave spectrum of the BrO radical equilibrium structure and dipole moment, J. Mol. Spectrosc. 44, 594–598.

    Article  Google Scholar 

  • Amano, T. and Hirota, E., 1974: Microwave spectrum of the molecular oxygen in the excited vibrational state, J. Mol. Spectrosc. 53, 346–363.

    Article  Google Scholar 

  • De Backer-Barilly, M. R. and Barbe, A., 2001: Absolute intensities of the 10 μm bands of 16O3, J. Mol. Spectrosc. 205, 43–53.

    Article  PubMed  Google Scholar 

  • Bakri, B., Colmont, J.-M., Rohart, F., and Wlodarczak, G., 2002: K-dependence of pressure broadening coefficients in symmetric top molecules: Cases of 12CH335Cl and 12CH3C14N, Poster J32, “The 17th International Conference on High Resolution Molecular Spectroscopy'', Prague, Sept 1–5 (2002).

  • Ballard, J., Johnston, W. B., Moffat, P. H., and Llewellyn-Jones, D. T., 1985: Experimental determination of the temperature dependence of nitrogen broadened line widths in the 1 ← 0 band of HCl, J. Quant. Spectrosc. Radiat. Transfer. 33, 365–371.

    Article  Google Scholar 

  • Baron, P., Ricaud, P., de La Noë, J., Eriksson, J. E. P., Merino, F., Ridal, M., and Murtagh, D., 2002: Studies for the Odin Sub-Millimeter Radiometer: II. Retrieval methodology, Can. J. Phys., 80, 341–356.

    Article  Google Scholar 

  • Bauer, A., Godon, M., and Duterage, B., 1985: Self- and air-broadened linewidths of the 183 GHz absorption in water vapor, J. Quant. Spectrosc. Radiat. Transfer. 33, 167–175.

    Article  Google Scholar 

  • Bauer, A., Duterage, B., and Godon, M., 1986: Temperature dependence of water-vapor absorption in the wing of the 183 GHz line, J. Quant. Spectrosc. Radiat. Transfer. 36, 307–318.

    Article  Google Scholar 

  • Bauer, A., Godon, M., Kheddar, M., Hartmann, J.-M., Bonamy, J., and Robert, D. 1987: Temperature and perturber dependences of water-vapor 380 GHz-line broadening, J. Quant. Spectrosc. Radiat. Transfer. 37, 531–539.

    Article  Google Scholar 

  • Bauer, A., Godon, M., Kheddar, M., and Hartmann, J.-M., 1989: Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz, calculations below 1000 GHz, J. Quant. Spectrosc. Radiat. Transfer. 41, 49–54.

    Article  Google Scholar 

  • Bauer, A. and Godon, M., 1991: Temperature dependence of water-vapor absorption in linewings at 190 GHz, J. Quant. Spectrosc. Radiat. Transfer. 46, 211–220.

    Article  Google Scholar 

  • Bauer, A., Godon, M., Carlier, J., Ma, Q., and Tipping, R. H., 1993: Absorption by H2O and H2O–N2 mixtures at 153 GHz, J. Quant. Spectrosc. Radiat. Transfer. 50, 463–475.

    Article  Google Scholar 

  • Bauer, A., Godon, M., Carlier, J., and Ma, Q., 1995: Water vapor absorption in the atmospheric window at 239 GHz, J. Quant. Spectrosc. Radiat. Transfer. 53, 411–423.

    Article  Google Scholar 

  • Bauer, A., Birk, M., Wagner, W., Colmont, J.-M., Priem, D., Wlodarczak, G., Buehler, S., Von Engeln, A., Künzi, K., and Perrin, A., 1998a: Study on a spectroscopic database for millimeter and submillimeter wavelength, Final Report of ESA N11581/95/NL/CN (1998).

  • Bauer, A., Godon, M., Carlier, J., and Gamache, R. R., 1998b: Continuum in the windows of the water vapor spectrum. Absorption of H2O-Ar at 239 GHz and linewidth calculations, J. Quant. Spectrosc. Radiat. Transfer. 59, 273–285.

    Article  Google Scholar 

  • Benner, D., Malathy, Ch., Devi, V., Blake, T. A., Brown, L. R., Toth, R. A., and Smith, M. A. H., 2004: Air broadening parameters in the υ3 band of 14N16O2 using a multispectrum fitting technique. RB06, 59th Ohio State International Symposium on Molecular Spectroscopy, Ohio (2004).

  • De Bievre, P., Holden, N. E., and Barnes, I. L., 1984: Isotopic abundances and atomic weights of the elements, J. Phys. Chem. Ref. Data 13, 809–891.

    Google Scholar 

  • Birk, M., Wagner, W., Flaud, J.-M., and Hausamann, D., 1994a: Linestrengths in the ν33 hot band of ozone, J. Mol. Spectrosc. 163, 262–275.

    Article  Google Scholar 

  • Birk, M., Wagner, W., and Flaud, J.-M., 1994b: Experimental linestrengths of far-infrared pure rotational transitions of ozone, J. Mol. Spectrosc. 163, 245–261.

    Article  Google Scholar 

  • Birk, M., Colmont, J.-M., Priem, D., Wagner, W., and Wlodarczak, G., 1997: Fifteenth Colloquium on High Resolution Molecular Spectroscopy, Glasgow, Scotland, 7–11 September 1997, Poster F4, (1997): N2, O2, and Air-Broadening Coefficients of the J=3–2 line of CO and the J=342, 32–341,33 line of O3, Measured with two Techniques: Tunable Microwave Source and Fourier Transform Spectroscopy (F4).

  • Blanquet, G., Walrand, J., and Bouanich, J.-P., 1993a: Diode laser measurements of O2-broadening in the ν3 band of CH335Cl, J. Mol. Spectrosc. 159, 137–143.

    Article  Google Scholar 

  • Blanquet, G., Walrand, J., and Bouanich, J.-P., 1993b: Diode laser measurements of N2-broadening in the ν3 band of CH335Cl, J. Mol. Spectrosc. 160, 253–257.

    Article  Google Scholar 

  • Bocquet, R., Demaison, J., Poteau, L., Liedtke, M.. Belov, S., Yamada, K. M. T., Winnewisser, G., Gerke, C., Gripp, J., and Köhler, Th., The Ground State Rotational Spectrum of Formaldehyde, 1996: Mol. Spectrosc. 177, 154–159.

    Article  Google Scholar 

  • Bouanich, J.-P., Walrand, J., Alberty, S., and Blanquet, G., 1987: Laser Measurements of Oxygen-Broadened line widths in the ν1 Band of OCS, J. Mol. Spectrosc. 123, 37–47.

    Article  Google Scholar 

  • Bouanich, J.-P., Blanquet, G., and Walrand, J., 1993: Theoretical O2- and N2-broadening coefficients for methyl chloride spectral lines, J. Mol. Spectrosc. 161, 416–426.

    Article  Google Scholar 

  • Bouanich, J.-P., Blanquet, G., Populaire, J. C., and Walrand, J., 2001: Broadening for methyl chloride at low temperature by diode laser spectroscopy, J. Mol. Spectrosc. 208, 72–78.

    Article  PubMed  Google Scholar 

  • Brown, J. M., Byfleet, C. R., Howard, B. J., and Russell, D. K., 1972: The electron spectrum of the BrO radical equilibrium structure and dipole moment, Mol. Phys. 23, 457–468.

    Google Scholar 

  • Brown, L., Farmer, C. B., Rinsland, C. P., and Toth, R. A., 1987: Molecular line parameters for the Atmospheric Molecule Trace Spectroscopy experiment, Appl. Opt. 26, 5154–5182.

    Google Scholar 

  • Brown, L. R. and Plymate, J., 1996: H2-Broadened H216O in four infrared bands between 55 and 4045 cm-1, J. Quant. Spectrosc. Radiat. Transfer 56, 263–282.

    Article  Google Scholar 

  • Buehler, S. A., Eriksson, P., Kuhn, T., van Engeln, A., and Verdes, C. L., 2004: ARTS, the Atmospheric Radiative Transfer Simulator, J. Quant. Spectrosc. Radiat. Transfer. 91, 65–93.

    Article  Google Scholar 

  • Burkholder, J. B., Hammer, P. D., Howard, C. J., Maki, A. G., Thompson, G., and Chackerian, C., 1987: Infrared measurements of the ClO radical, J. Mol. Spectrosc. 124, 139–161.

    Article  Google Scholar 

  • Butler, J. E., Kawaguchi, K., and Hirota, E., 1984: Infrared diode laser spectroscopy of the BrO radical, J. Mol. Spectrosc. 104, 372–379.

    Article  Google Scholar 

  • Carpenter, J. H., 1974: The microwave spectrum and structure of carbonyl fluoride, J. Mol. Spectrosc. 50, 182–201.

    Article  Google Scholar 

  • Carpenter, J. H. and Seo, P., 1985: The millimeter-wave spectrum of methyl chloride, J. Mol. Spectrosc. 113, 355–361.

    Article  Google Scholar 

  • Cazzoli, G. and De Lucia, F. C., 1979: Millimeter wave spectrum of HNO3, J. Mol. Spectrosc. 76, 131–141.

    Article  Google Scholar 

  • Cazzoli, G., Degli Esposti, C., Favero, P. G., and Severi, G., 1981: Microwave spectra of 16O17O and 18O16O, Nuovo Cimento-B 62B, 243–254.

    Google Scholar 

  • Cazzoli, G., Dore, L., Puzzarini, C., and Beninati, S., 2002a: Millimeter- and submillimeter-wave spectrum of C17O. Rotational hyperfine structure analyzed using the Lamb-dip technique, Phys. Chem. Chem. Phys. 4, 3575–3577.

    Article  Google Scholar 

  • Cazzoli, G., Dore, L., Cludi, L., Puzzarini, C., and Beninati, S., 2002b: Hyperfine structure of the J=1←0 transition of 13CO, J. Mol. Spectrosc. 215, 160–162.

    Article  Google Scholar 

  • Cazzoli, G. and Puzzarini, C., 2004: Hyperfine structure of the J=1←0 transition of H35Cl and H37Cl, J. Mol. Spectrosc. 226, 161–168.

    Article  Google Scholar 

  • Cazzoli, G., Dore, L., Puzzarini, C., Bakri, B., Colmont, J.-M., Rohart, F., Wlodarczak, 2005: Experimental determination of air-broadening parameters of pure rotational transitions of HNO3: intercomparison of measurements by using different techniques, J. Mol. Spectrosc. 229, 158–169.

    Article  Google Scholar 

  • Chackerian, C., Goorvitch, D., and Giver, L. R., 1985: HCl vibrational fundamental band: line intensities and temperature dependence of self-broadening coefficients, J. Mol. Spectrosc. 113, 373–387.

    Article  Google Scholar 

  • Chance, K., Jucks, K. W., Johnson, D. G., and Traub, W. A., 1994a: The Smithsonian Astrophysical Observatory Database SAO92, J. Quant. Spectrosc. Radiat. Transfer 52, 447–457.

    Article  Google Scholar 

  • Chance, K., DeNatale, P., Bellini, M., Inguscio, M., DiLonardo, G., and Fusina, L., 1994b: Pressure broadening of the 2.4978 THz rotational lines of HO2 by N2 and O2, J.Mol. Spectrosc. 163, 67–70.

    Article  Google Scholar 

  • Claveau, C., Camy-Peyret, C., Valentin, A., and Flaud, J.-M., 2001: Absolute intensities of the ν1 and ν3 bands of 16O3, J. Mol. Spectrosc. 206, 115–125.

    Article  PubMed  Google Scholar 

  • Cohen, E. A., Pickett, H. M., and Geller, M., 1981: The rotational spectrum and molecular parameters of BrO in the 2Π3/2 state, J. Mol. Spectrosc. 87, 459–470.

    Article  Google Scholar 

  • Cohen, E. A., Pickett, H. M., and Geller, M., 1984: The submillimeter spectrum of ClO, J. Mol. Spectrosc. 106, 430–435.

    Article  Google Scholar 

  • Cohen, E. A. and Lewis-Bevin, W., 1991: Further measurements of the rotational spectrum of COF2: Improved molecular constants for the ground and ν2 states, J. Mol. Spectrosc. 148, 378–384.

    Article  Google Scholar 

  • Colmont, J.-M. and Semmoud-Monnanteuil, N., 1987: Pressure broadening of the N2O J=9←8 rotational transition by N2O, N2 and O2, J. Mol. Spectrosc. 126, 240–242.

    Article  Google Scholar 

  • Colmont, J.-M., Priem, D., Wlodarczak, G., and Gamache, R. R., 1999: Measurements and calculations of the halfwidth of two rotational transitions of water vapor perturbed by N2, O2, and air, J. Mol. Spectrosc. 193, 233–243.

    Article  PubMed  Google Scholar 

  • Colmont, J.-M., Bakri, B., Rohart, F., and Wlodarczak, G., 2003: Experimental determination of pressure broadening parameters of millimeter wave transitions of HNO3 perturbed by N2 and O2 and their temperature dependences, J. Mol. Spectrosc. 220, 52–57.

    Article  Google Scholar 

  • Coudert, L. H., 1994: Analysis of the rotational energy levels of water and determination of the potential energy function for the bending ν2 mode, J. Mol. Spectrosc. 165, 406–425.

    Article  Google Scholar 

  • Coudert, L. H., 1999: Line frequency and line intensity analyses of water vapor, Mol. Phys. 96, 941–954.

    Article  Google Scholar 

  • Cox, A. P. and Riveros, J. M., 1965: Microwave spectrum and structure of nitric acid, J. Chem. Phys. 42, 3106–3112.

    Article  Google Scholar 

  • Crownover, R. L., Booker, R. A., De Lucia, F. C., and Helminger, P., 1988: The rotational spectrum of nitric acid: The first five vibrational states, J. Quant. Spectrosc. Radiat. Transfer 40, 39–46.

    Article  Google Scholar 

  • Crownover, R. L., De Lucia, F. C., and Herbst, E., 1990: The submillimeter-wave spectrum of 16O18O, Astrophys. J. Lett. 349, L29–31.

    Article  Google Scholar 

  • De La Noë, J., Lezeaux, O., Guillemin, G., Lauqué, R., Baron, P., and Ricaud, Ph., 1998: A ground-based microwave radiometer dedicated to stratospheric ozone monitoring, J Geophys Res. D103, 22147–22161.

    Article  Google Scholar 

  • DeLeeuw, F. H. and Dymanus, A., 1973: Magnetic properties and molecular quadrupole moment of HF and HCl by molecular beam electronic resonance spectroscopy, J. Mol. Spectrosc. 48, 427–445.

    Article  Google Scholar 

  • De La Noë, J., Baudry, A., Monnanteuil, N., Colmont, J.-M., and Dierich, P., 1983: Millimeter wavelength ground based observations of two minor constituents of the atmosphere, C.R.A.S., Serie A, 296, 1243–1248.

  • De Lucia, F. C., Cook, R. L., Helminger, P., and Gordy, W., 1971: Millimeter and submillimeter wave rotational spectrum and centrifugal distortion effects of HDO, J. Chem. Phys. 55, 5334–5339.

    Article  Google Scholar 

  • De Lucia, F. C., Helminger, P., Cook, R. L., and Gordy, W., 1972a: Submillimeter microwave spectrum of H218O, Phys. Rev. A6, 1324–1326.

    Google Scholar 

  • De Lucia, F. C., Helminger, P., Cook, R. L., and Gordy, W., 1972b: Submillimeter microwave spectrum of H216O, Phys. Rev. A5, 487–490.

    Google Scholar 

  • De Lucia, F. C., Helminger, P., and Kirchhoff, W. H., 1974: Microwave spectra of molecules of astrophysical interest. V. Water vapour, J. of Phys. and Chem. Ref. Data 3, 211–219.

    Google Scholar 

  • De Lucia, F. C. and Helminger, P., 1975: Microwave spectrum and ground state energy levels of H217O, J. Mol. Spectrosc. 56, 138–145.

    Article  Google Scholar 

  • Demaison, J., Bocquet, R., Chen, W. D., Papousek, D., Boucher, D., and Bürger, H., 1994: The far-infrared spectrum of methyl chloride: Determination and order of magnitude of the sextic centrifugal distortion constants in symmetric tops, J. Mol. Spectrosc. 166, 147–157.

    Article  Google Scholar 

  • Demaison, J., Buehler, S., Koulev, N., Kuhn, T., Verdes, C., Cazzoli, G., Dore, L., Puzzarini, C., Flaud, J.-M., Perrin, A., Bakri, B., Colmont, J.-M., Rohart, F., and Wlodarczak, G., 2004: Characterisation of Millimeter wave spectroscopic signatures, ESTEC contract n 16377/02/NL/FF, (2004).

  • Depannemaecker, J. C. and Bellet, J., 1977: Rotational spectra of the 16O3 and of the five 18O isotopic species, J. Mol. Spectrosc. 66, 106–120.

    Article  Google Scholar 

  • Depannemaecker, J. C. and Lemaire, J., 1988: Measurement with a double-beam spectrometer of strengths and half-widths of 2ν2 and 3ν22 OCS Lines, J. Mol. Spectrosc. 128, 350–359.

    Article  Google Scholar 

  • De Valk, P., Chipperfield, M., Crewell, S., Franke, B., Goede, A., de Jonge, A., Küllmann, H., Lee, A., Mees, J., Urban, J., and Wohlgemuth, J., 1997: Airborne heterodyne measurements of stratospheric ClO, Hcl; O3 and N2O during SESAME-I over Northern Europe, J Geophys. Res. D102, 1391–1398.

    Article  Google Scholar 

  • Dicke, R. H., 1953: The effect of collisions upon the doppler width of spectral lines, Phys. Rev. 89, 472–473.

    Article  Google Scholar 

  • Drouin, B. J., Miller, C. E., Müller, H. S. P., and Cohen, E. A., 2001a: The rotational spectra, isotopically independent parameters, and interatomic potentials for the X12Π3/2 and X22Π3/2 states of BrO, J. Mol. Spectrosc. 205, 128–138.

    Article  Google Scholar 

  • Drouin, B. J., Miller, C. E., Cohen, E. A., Wagner, W., and Birk, M., 2001b: Further investigations of the ClO rotational, J. Mol. Spectrosc. 207, 4–9.

    Article  Google Scholar 

  • Drouin, B. J., 2004a: Temperature dependent pressure-induced lineshape of the HCl J=1←0 rotational transition in nitrogen and oxygen, J. Quant. Spectrosc. Radiat. Transfer. 83, 321–331.

    Article  Google Scholar 

  • Drouin, B. J., Gamache, R. R., and Fischer, J., 2004b: Temperature dependent pressure induced lineshape of O3 rotational transitions in air, J. Quant. Spectrosc. Radiat. Transfer 83, 63–81.

    Article  Google Scholar 

  • Eluszkiekicz, E., Crisp, D., Zurek, R., Elson, L., Fishbein, E., Froidevaux, L., Waters, J., Grainger, R. G., Lambert, A., Harwood, R., and Peckham G., 1996: Residual circulation in the stratosphere and lower mesosphere as diagnosed from Microwave Limb Sounder data, J. of the Atmosph. Sciences 53, 217–240.

    Article  Google Scholar 

  • Eriksson, P., Merino, F., Murtagh, D., Baron, P., Ricaud, P., and de La Noë, J., 2002: Studies for the Odin Sub-Millimeter Radiometer: I. Radiative transfer and instrument simulation, Can. J. Phys., 80, 321–340.

    Article  Google Scholar 

  • Fabricant, B., Krieger, D., and Muenter, J. S., 1977: Molecular beam electric resonance study of formaldehyde, thioformaldehyde and ketene, J. Chem. Phys. 67, 1576–1586.

    Article  Google Scholar 

  • Fischer, J., Gamache, R. R., Goldman, A., Rothman, L. S., and Perrin, A., 2003: Total internal partition sums for molecular species in the 2000 edition of the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer 82, 401–412.

    Article  Google Scholar 

  • Flaud, J.-M., Camy-Peyret, C., and Toth, R. A., 1981: Water vapour line parameters from microwave to medium infrared, an atlas of H216O, H217O and H218O line positions and intensities between 0 and 4350 cm-1, Pergamon Press, Oxford (UK).

  • Flaud, J.-M., Camy-Peyret, C., Rinsland, C. P., Smith, M. A. H., and Malathy Devi, V., 1990a: Atlas of ozone spectral parameters from microwave to medium infrared, Academic Press Inc., Cambridge, Massachusetts.

    Google Scholar 

  • Flaud, J.-M., Camy-Peyret, C., Rinsland, C. P., Malathy Devi, V., Smith, M. A. H., and Goldman, A., 1990b: Improved line parameters for ozone bands in the 10 μm spectral region, Appl. Opt. 29, 3667–3671.

    Google Scholar 

  • Flaud, J.-M., and Bacis, R., 1998a: The ozone molecule: Infrared and microwave spectroscopy, Spectrochimica Acta 54A, 3–16.

    Google Scholar 

  • Flaud, J.-M., Birk, M., Wagner, W., Orphal, J., Klee, S., Lafferty, W. J., 1998b: The far infrared spectrum of HOCl: line positions and intensities, J. Mol. Spectrosc. 191, 362–367.

    Article  Google Scholar 

  • Flaud, J.-M., Wagner, W., Birk, M., Camy-Peyret, C., Claveau, C., De Backer-Barilly, M. R., Barbe, A., and Piccolo, C., 2003a: Ozone absorption around 10 μm, J. Geophys. Res. D108, doi:10.1029/2002JD002755.

  • Flaud, J.-M., Piccolo, C., Carli, B., Perrin, A., Coudert, L. H., Teffo, J.-L., and Brown, L., 2003b: Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment, J. of Atmos. Ocean and Optics 16, 172–182.

    Google Scholar 

  • Galatry, R., 1961: Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev. 122, 1218–223.

    Article  Google Scholar 

  • Gamache, R. R. and Davies, R. W., 1983: Theoretical calculation of molecular nitrogen broadened halfwidths of water using quantum Fourier theory, Appl. Opt. 22, 4013–4019.

    Google Scholar 

  • Gamache, R. R., Hartmann, J.-M., and Rosenmann, L., 1994: Collisional broadening of water vapor lines-I. A survey of experimental results, J. Quant. Spectrosc. Radiat. Transfer 52, 481–499.

    Article  Google Scholar 

  • Gamache, R. R., Lynch, R., and Neshyba, S. P., 1998: New Developments in the Theory of Pressure-Broadening and Pressure-Shifting of Spectral Lines of H2O: The Complex Robert-Bonamy Formalism, J. Quant. Spectrosc. Radiat. Transfer 59, 319–335.

    Article  Google Scholar 

  • Gamache, R. R. and Fischer, J., 2003a: Half-widths of H216O, H218O, H217O HD16O and D216O: I. Comparaison between isotopomers, J. Quant. Spectrosc. Radiat. Transfer 78, 289–304.

    Article  Google Scholar 

  • Gamache, R. R. and Fischer, J., 2003b: Half-widths of H216O, H218O, H217O, HD16O and D216O: II Comparison with measurements, J. Quant. Spectrosc. Radiat. Transfer 78, 305–318.

    Article  Google Scholar 

  • Gamache, R. R. and Hartmann, J.-M., 2004: Collisional parameters of H2O lines: effects of vibration, J. Quant. Spectrosc. Radiat. Transfer 83, 119–147.

    Article  Google Scholar 

  • Gillis, H. E., Singbeil, D., Anderson, W. D., Wellington Davis, R., Gerry, M. C. L., Cohen, E. A., Pickett, H. M., Lovas, F. J., and Suenram, R. D., 1984: The microwave and millimeter-wave spectra of hypochlorous acid, J. Mol. Spectrosc 103, 466–485.

    Article  Google Scholar 

  • Godon, M., Carlier, J., and Bauer, A., 1992: Laboratory studies of water vapor absorption in the atmosphere window at 213 GHz, J. Quant. Spectrosc. Rad. Transfer 47, 275–285.

    Article  Google Scholar 

  • Golubiatnikov, G., and Krupnov, A. F., 2003: Microwave study of the rotational spectrum of oxygen molecule in the range up to 1.12 THz, J. Mol. Spectrosc. 217, 282–287.

    Article  Google Scholar 

  • Goyette, T. M., Ebenstein, W. L., De Lucia, F. C., and Helminger, P., 1988a: Pressure broadening of the millimeter and submillimeter wave spectra of nitric acid by oxygen and nitrogen, J. Mol. Spectrosc. 128, 108–116.

    Article  Google Scholar 

  • Goyette, T. M., Ebenstein, W. L., Shostak, S. L., De Lucia, F. C., and Helminger, P., 1988b: Pressure broadening of NO2, CF2Cl2, HDO and HOOH by O2 and N2 in the millimeter wave region, J. Quant. Spectrosc. Radiat. Transfer 40, 129–134.

    Article  Google Scholar 

  • Goyette, T. M., and De Lucia, F. C., 1990: The temperature broadening of the 31,3-22,0 transition of water (183 GHz) between 80 and 600 K, J. Mol. Spectrosc. 183, 346–358.

    Article  Google Scholar 

  • Goyette, T. M., Guo, W., De Lucia, F. C., and Helminger, P., 1991: Variable temperature pressure broadening of HNO3 in the millimeter wave spectral region, J. Quant. Spectrosc. Radiat. Transfer 46, 293–297.

    Article  Google Scholar 

  • Goyette, T. M., De Lucia, F. C., Dutta, J. M., and Jones, C. R., 1993a: Variable temperature pressure broadening of the 41,4-32,1 transition of water (380 GHz) by O2 and N2, J. Quant. Spectrosc. Radiat. Transfer 49, 485–489.

    Article  Google Scholar 

  • Goyette, T. M., Fergusson, D. W., De Lucia, F. C., Dutta, J. M., and Jones, C. R., 1993b: The pressure broadening of HDO by O2, N2 and H2 between 100 and 600 K, J. Mol. Spectrosc. 162, 366–374.

    Article  Google Scholar 

  • Goyette, T. M., Oesterling, L. C., Petkie, D. T., Booker, R. A., Helminger, P., and De Lucia, F. C., 1996: Rotational spectrum of HNO3 in the ν5 and 2ν9 vibrational states, J. Mol. Spectrosc. 175, 395–410.

    Article  Google Scholar 

  • Goyette, T. M., Cohen, E. A., and De Lucia, F. C., 1998: Pressure broadening of HNO3 by N2 and O2: an intercomparison in the millimeter wave spectral range, J. Quant. Spectrosc. Radiat. Transfer 60, 377–384.

    Article  Google Scholar 

  • Harde, H., Katzenellenbogen, N., and Grischkowsky, D., 1994: Terahertz coherent transients from methyl chloride vapor, J. of Opt. Soc. of Am. B11, 1018–1030.

    Google Scholar 

  • Harde, H., Cheville, R. A., and Grischkowsky, D., 1997a: Terahertz coherent transients from methyl chloride vapor, J. of Opt. Soc. of Am. B14, 3282–3293.

    Google Scholar 

  • Harde, H., Cheville, R. A., and Grischkowsky, D., 1997b: Terahertz studies of collision broadened rotational lines, J. Phys. Chem. A101, 3646–3660.

    Google Scholar 

  • Houdeau, J. P., Larvor, M., and Haeusler, C., 1980: Etude à basse température des largeurs et des déplacements des raies rovibrationnelles de la bande de H35Cl comprimé par N2, O2, D2 and H2, Can. J. Phys. 58, 318–324 (1980).

    Google Scholar 

  • Kaiser, E. W., 1970: Dipole moment and hyperfine parameters of H35Cl and D35Cl, J. Chem. Phys. 53, 1686–1703.

    Article  Google Scholar 

  • Klapper, G., Lewen, F., Gendriesch, R., Belov, S. P., and Winnewisser, G., 2000a: Sub-Doppler measurements of the rotational spectrum of 13C16O, J. Mol. Spectrosc. 201, 124–127.

    Article  Google Scholar 

  • Klapper, G., Lewen, F., Belov, S. P., and Winnewisser, G., 2000b: Sub-Doppler measurements and rotational spectrum of 13C18O, Z. Naturforsch. 55A, 441–443.

    Google Scholar 

  • Klapper, G., Lewen, F., Gendriesch, R., Belov, S. P., and Winnewisser, G., 2001: Sub-Doppler measurements and terahertz rotational spectrum of 12C18O, Z. Naturforsch. 56A, 329–332.

    Google Scholar 

  • Klaus, Th., Belov, S. P., and Winnewisser, G., 1998: Precise measurement of the pure rotational submillimeter-wave spectrum of HCl and DCl in their v=0, 1 states, J. Mol. Spectrosc. 187, 109–117.

    Article  PubMed  Google Scholar 

  • Kleiner, I., Godefroid, M., Herman M., and Mc Kellar, A. R. W., 1987: Infrared laser Stark spectrum of HNO3 at 6 μm, J. of the Opt. Soc. of Am. B4, 1159–1164.

    Google Scholar 

  • Koga, Y., Takeo, H., Kondo, S., Sugie, M., Matsumura, C., McRae, G. A., Cohen, E. A., 1989: The rotational spectra, molecular structure, dipole moment, and hyperfine constants of HOBr and DOBr, J. Mol. Spectrosc. 138, 467–481.

    Article  Google Scholar 

  • Krupnov, A. F., Golubiatnikov, G.Yu., Marlov V. N., and Sergeev, D. A., Pressure broadening of the rotational line of oxygen at 425 GHz, 2002: J. Mol. Spectrosc. 215, 309–311.

  • Krupenie, P. H., 1972: The spectrum of molecular oxygen, J. Phys. Chem. Ref. Dat. 1, 423–534.

    Google Scholar 

  • Kuhn, T., Bauer, A., Godon, M., Buehler. S., and Kunzi, K., 2002: Water vapor continuum: absorption measurements at 350 GHz and model calculations, J. Quant. Spectrosc. Radiat. Transfer 74, 545–562.

    Article  Google Scholar 

  • Lacome, N., Levy, A., and Boulet, Ch., 1983: Air-broadened linewidths of nitrous oxide: an improved calculation, J. Mol. Spectrosc. 97, 139–153.

    Article  Google Scholar 

  • Lahoz, W. A., O'Neill, A., Carr, E. S., Harwood, R. S., Froidevaux, L., Read, W. G., Waters, J. W., Kumer, J. B., Mergenthaler, J. L., Roche, A. E., Peckham, G. E., and Swinbank, R., 1994: Three-dimensional evolution of water vapor distributions in the northern hemisphere stratosphere as observed by the MLS, J. of the Atm. Science 51, 2914–2930.

    Article  Google Scholar 

  • Lanquetin, R., Coudert, L. H., and Camy-Peyret, C., 1999: High-lying rotational levels of water: comparison of calculated and experimental energy levels for (000) and (010) up to J=25 and 21, J. Mol. Spectrosc. 195, 54–67.

    Article  PubMed  Google Scholar 

  • Lanquetin, R., Coudert, L. H., and Camy-Peyret, C., 2001: High-lying rotational levels of water: an analysis of the energy levels of the five first vibrational states, J. Mol. Spectrosc. 196, 83–103.

    Article  Google Scholar 

  • Larsen, R. W., Nicolaisen, F. M., and Sø rensen, G. O., 2001: Determination of self-air and oxygen broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependencies, J. Mol Spectrosc. 210, 259–270.

    Article  Google Scholar 

  • Laurie, V. W., and Pence, D. T., 1962: Microwave spectrum structure and dipole moment of carbonyl fluoride, J. Chem. Phys. 37, 2995–2999.

    Article  Google Scholar 

  • Lemaire, V., Babay, A., Lemoine, C., Rohart, F., and Bouanich, J.-P., 1996: Self- and foreign-gas-broadening and shifting of lines in the ν2 band of HCN, J. Mol. Spectrosc. 177, 40–45.

    Article  Google Scholar 

  • Liebe, H. J., 1984: The atmospheric water vapor continuum below 300 GHz., International Journal of Infrared and Millimeter Waves 5, 207–227.

    Article  Google Scholar 

  • Liebe, H. J., 1985: An updated model for millimeter wave propagation in moist air, Radio Science 20, 1069–1089.

    Google Scholar 

  • Liebe, H. J., 1989: MPM an atmospheric millimeter-wave propagation model, International Journal of Infrared and Millimeter Waves 10, 631–650.

    Article  Google Scholar 

  • Liebe, H. J., Rosenkranz, P. W., and Hufford, G. A., 1992: Atmospheric 60 GHz oxygen spectrum: new laboratory measurements and line parameters, J. Quant. Spectrosc. Radiat. Transfer 48, 629–643.

    Article  Google Scholar 

  • Livesey, N. J., Read, W. G., Froidevaux, L., Waters, J. W., Santee, M. L., Pumphrey, H. C., Wu, D. L., Shippony, Z., and Jarnot, R. F., 2003: The UARS Microwave Limb Sounder version 5 data set: Theory, characterization, and validation, J. Geophys. Res. D108, doi:10.1029/2002JD002273.

  • Lovas, F. J., 1978: Microwave spectral tables. II. Triatomic molecules, J. Phys. Chem. Ref. Data 7, 1445–1750.

    Google Scholar 

  • Lovas, F. J., 1985: Microwave spectra of molecules of astrophysical interest. XXII. Sulfur dioxide (SO2), J. Phys. Chem. Ref. Data 14, 395–488.

    Google Scholar 

  • Lovas, F. J., 2004: NIST recommended rest frequencies for observed interstellar molecular microwave Transitions-2002 revision, J. Phys. Chem. Ref. Data 33, 177–355.

    Article  Google Scholar 

  • Lyulin, O. M., Perevalov, V. I., and Teffo, J.-L., 1995: Effective dipole moment and band intensities of nitrous oxide, J. Mol. Spectrosc. 174, 566–580.

    Google Scholar 

  • Ma, Q. and Tipping, R. H., 1990: Water vapor continuum in the millimeter spectral region, J. Chem. Phys. 93, 6127–6139.

    Article  Google Scholar 

  • Ma, Q. and Tipping, R. H., 1992: A far wing line shape theory and its applications to the foreign broadened water continuum absorption, J. Chem Phys. 97, 818–828.

    Article  Google Scholar 

  • Ma, Q. and Tipping, R. H., 2002: Water vapor millimeter wave foreign continuum: a Lanczos calculation in the coordinate representation, J. Chem. Phys. 117, 10581–10596.

    Article  Google Scholar 

  • Malathy Devi, V., Rinsland, C. P., Smith, M. A. H., Benner, D. Ch., and Fridovitch, B., 1986: Tunable diode laser measurements of air broadened linewidths in the ν6 band of H2O2, Appl. Opt. 25, 1844–1847.

    Google Scholar 

  • Markov, V. N. and Krupnov, A. F., 1995: Measurements of the pressure shift of the 110-101 water line at 556 GHz produced by mixtures of gases, J. Mol. Spectrosc. 172, 211–214.

    Article  Google Scholar 

  • Matsushima, F., Odashima, H., Iwaskai, T., and Tsunekawa, S., 1995: Frequency measurement of pure rotational transitions of H2O from 0.5 to 5 THz, J. Mol. Struct. 352–353, 371–378.

    Article  Google Scholar 

  • May, R. D., 1992: Line intensities and collisional broadening for the ν4 and ν6 bands of COF2, J.~Quant. Spectrosc. Radiat. Transfer 48, 701–712.

    Article  Google Scholar 

  • Meerts, W. L., De Leeuw, F. H., and Dymanus, A., 1977: Electric and magnetic properties of carbone monoxide by molecular beam electric resonance spectroscopy, Chem. Phys. 22, 319–324.

    Article  Google Scholar 

  • Merino, F., Murtagh, D., Baron, P., Ricaud, P., de La Noë, J., and Eriksson, J. E. P., 2002: Studies for the Odin Sub-Millimeter Radiometer: III. Performance simulations, Can. J. Phys. 80, 357–373.

    Article  Google Scholar 

  • Messer, J. K. A., De Lucia, F. C., and Helminger, P., 1983: The pure rotational spectrum of water vapor-a millimeter, submillimeter, and far infrared analysis, Int. J. Infrar., and Mill. Waves 4, 505–539.

    Google Scholar 

  • Messer, J. K. A., De Lucia, F. C., and Helminger, P., 1984: Submillimeter spectroscopy of the major isotopes of water, J. Mol. Spectrosc. 105, 139–155.

    Article  Google Scholar 

  • Mizushima, M. and Yamamoto, S., 1991: Microwave absorption lines of 16O18O in its (X3 Σg-, ν=0) state, J. Mol. Spectrosc. 148, 447–452.

    Article  Google Scholar 

  • Morino, I., and Yamada, K. M. T., 2003: Absorption profiles of N2O measured for the J=25 –24 and 26–25 rotational transitions, J. Mol. Spectrosc. 219, 282–289.

    Article  Google Scholar 

  • Muenter, J. S., 1975: Electric dipole of carbon monoxide, J. Mol. Spectrosc. 155, 490–491.

    Article  Google Scholar 

  • Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman, J., Witt, G., Eriksson, P., Jimenez, C., Mégie, G., de La Noë, J., Ricaud, P., Baron, P., Pardo, J. R., Hauchecorne, A., Llewellyn, E. J., Degenstein, D. A., Gattinger, R. L., Lloyd, N. D., Evans, W. F. J., McDade, I. C., Haley, C. S., Sioris, C., von Savigny, C., Solheim, B. H., McConnell, J. C., Strong, K., Richardson, E. H., Leppelmeier, G. W., Kyrölä, E., Auvinen, H., and Oikarinen, L., 2002: An overview of the Odin atmospheric mission, Can. J. Phys. 80, 309–319.

    Article  Google Scholar 

  • Nadler, S., Daunt, S. J., and Reuter, D. C., 1987: Tunable diode laser measurements of formaldehyde foreign-gas broadening parameters and line strengths in the 9–11 μm region, Applied Opt. 26, 1641–1646.

    Google Scholar 

  • Nedoluha, G., Bevilacqua, R., Gomez, R., Thacker, D., Waltmann, W., and Pauls, T., 1995: Ground-based measurements of water vapor in the middle atmosphere, J Geophys Res. D100, 2927–2939.

    Article  Google Scholar 

  • Nelson, D. D., and Zahniser, M. S., 1994: Air broadened linewidth measurements in the ν2 vibrational band of hydroperoxyl radical, J. Mol. Spectrosc. 166, 273–279.

    Article  Google Scholar 

  • Nerf, R. B., 1975a: Pressure broadening and shift (self-hydrogen- and helium-) in the millimeter wave spectrum of formaldehyde, J. Mol. Spectrosc. 58, 451–473.

    Article  Google Scholar 

  • Nerf, R. B., and Sonnenberg, M. A., 1975b: Pressure broadening of the J=1–0 transition of hydrogen cyanide, J. Mol Spectrosc. 58, 479–480.

    Article  Google Scholar 

  • Nolt, I. G., Radostitz, J. V., Dilonardo, G., Evenson, K. M., Jennings, D. A., and Leopold, K. R., 1987: Accurate rotational constants of CO, HCl and HF: spectral standards for the 0–3 to 6 THz (10–200 cm-1) region, J. Mol. Spectrosc. 125, 490–491.

    Article  Google Scholar 

  • Odashima, H., Zink, L. R., and Evenson, K. M., 1999: Tunable far-infrared spectroscopy of HF, H35Cl, and H37Cl in the 6 to 9 THz region, J. Mol. Spectrosc. 194, 283–284.

    Article  PubMed  Google Scholar 

  • Oh, J. J., and Cohen, E. A., 1994: Pressure broadening of ClO by N2 and O2 near 204 and 649 GHz and new frequency measurements between 632 and 725 GHz, J. Quant. Spectrosc. Radiat. Transfer 52, 151–156.

    Article  Google Scholar 

  • Pardo, J. R., Pagani, L., Gerin, M., and Prigent, C., 1995: Evidence of the Zeeman splitting in the 21 to 01 rotational transition of the atmospheric 16O18O molecule from ground-based measurements, J. Quant. Spectrosc. Radiat. Transfer 54, 931–943.

    Article  Google Scholar 

  • Pardo, J. R., Pagani, L., Olofsson, G., Febvre, P., Tauber, J., 2000: Balloon-borne submillimeter observations of upper stratospheric O2 and O3, J. Quant. Spectrosc. Radiat. Transfer 67, 169–180.

    Article  Google Scholar 

  • Pardo, J. R., Ridal, M., Murtagh, D., and Cernicharo, J., 2002: Microwave temperature and pressure measurements with the Odin satellite: I Observational method, Can. J. Phys. 80, 443–454.

    Article  Google Scholar 

  • Park, K., Chance, K. V., Nolt, I. G., Radostitz, J. V., Vanek, M. D., Jennings, D. A., and Evenson, K. M., 1991: Pressure broadening of the 2.5 THz H35Cl rotational line by N2 and O2, J. Mol. Spectrosc. 147, 521–525.

    Article  Google Scholar 

  • Paulse, C. D., Coudert, L. H., Goyette, T. M., Crownover, R. L., Helminger, P., and De Lucia, F. C., 1996: Torsional splitting in the ν9 band of nitric acid, J. Mol. Spectrosc. 177, 9–18.

    Article  Google Scholar 

  • Pearson, J. C., Anderson, T., Herbst, E., De Lucia, F. C., and Helminger, P., 1991: Millimeter- and submillimeter-wave spectrum of highly excited states of water, Astr. J. Lett. L379, 41–43.

    Article  Google Scholar 

  • Perrin, A., Flaud, J.-M., Camy-Peyret, C., Carli, B., and Carlotti, M., 1988: The far infrared spectrum of NO2-Electron spin resonance and hyperfine Fermi contact resonance in the ground state, Mol. Phys. 63, 791–810.

    Google Scholar 

  • Perrin, A., Camy-Peyret, C., and Flaud, J.-M., 1992: Infrared Nitrogen Dioxide in the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer 48, 645–652.

    Article  Google Scholar 

  • Perrin, A., Flaud, J.-M., Camy-Peyret, C., Schermaul, R., Winnewisser, M., Mandin, J.-Y., Dana, V., Badaoui, M., and Koput, J., 1996: Line intensities in the far infrared spectrum of H2O2, J. Mol. Spectrosc. 176, 287–296.

    Article  Google Scholar 

  • Perrin, A., Flaud, J.-M., Goldman, A., Camy-Peyret, C., Lafferty, W. J., Arcas, Ph., and Rinsland, C. P., 1998a: NO2 and SO2 line parameters: 1996 HITRAN update and new results, J. Quant. Spectrosc. Radiat. Transfer 60, 839–850.

    Article  Google Scholar 

  • Perrin, A., 1998b: Recent progress in the analysis of HNO3 spectra, Spectrochimica Acta A54, 375–393.

    Google Scholar 

  • Perrin, A., Orphal, J., Flaud, J.-M., Klee, S., Mellau, G., Mäder, H., Walbrodt, D., and Winnewisser, M., 2004: New analysis of the ν5 and 2ν9 bands of HNO3 by infrared and millimeter wave techniques: line positions and intensities, J. Mol. Spectrosc. 228, 375–391.

    Google Scholar 

  • Petkie, D. T., Goyette, T. M., Helminger, P., Pickett, H. M., and De Lucia, F. C., 2001: The energy levels of the ν5/2ν9 dyad of HNO3 from millimeter and submillimeter rotational spectroscopy, J. Mol. Spectrosc. 208, 121–135.

    Article  PubMed  Google Scholar 

  • Petkie, D. T., Helminger, P., Butler, R. A. H., Albert, S., and De Lucia, F. C., 2003: The millimeter and submillimeter spectra of the ground and excited ν9, ν8, ν7, and ν6 vibrational states of HNO3, J. Mol. Spectrosc. 218, 127–130.

    Article  Google Scholar 

  • Pickett, H. M., Cohen, E. A., and Margolis, J. S., 1985: The infrared and microwave spectra of ozone for the (0, 0, 0), (1, 0, 0), and (0, 0, 1) states, J. Mol. Spectrosc. 110, 186–214.

    Article  Google Scholar 

  • Pickett, H. M., Cohen, E. A., Brown, L. R., Rinsland, C. P., Smith, M. A. H., Malathy Devi, V., Goldman, A., Barbe, A., Carli, B., and Carlotti, M., 1988: The vibrational and rotational spectra of ozone for the (0, 1, 0) and (0, 2, 0) states, J. Mol. Spectrosc. 128, 151–171.

    Article  Google Scholar 

  • Pickett, H. M., Poynter, R. L., Cohen, E. A., Delitsky, M. L., Pearson, J. C., and Müller, H. S. P., 1998: Submillimeter millimeter and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transfer 60, 883–890.

    Article  Google Scholar 

  • Pine, A. S. and Fried, A., 1985: Self broadening in the fundamental bands of HF and HCl, J. Mol. Spectrosc. 114, 148–162.

    Article  Google Scholar 

  • Pine, A. S. and Looney, J. P., 1987: N2 and air broadening in the fundamental bands of HF and HCl, J. Mol. Spectrosc. 122, 41–44.

    Article  Google Scholar 

  • Poynter, R. L., and Pickett, H. M., 1985: Submillimeter, millimeter and microwave spectral line catalog, Appl. Opt. 24, 2235–2240.

    Google Scholar 

  • Pourcin, J., 1972: Fourier spectrometry of the broadening of the rotational spectra of HCl in the far infrared by helium, J. Quant. Spectrosc. Radiat. Transfer. 12, 1617–1625.

    Article  Google Scholar 

  • Pourcin, J. Jacquemoz, A., Fournel, A., and Sielmann, H., 1981: Pressure-broadening spectroscopy of HCl pure rotational lines with a far-infrared optically pumped laser, J. Mol. Spectrosc. 90, 43–50.

    Article  Google Scholar 

  • Priem, D., Rohart, F., Colmont, J.-M., Wlodarczak, G., and Bouanich, J. P., 2000a: Lineshape study of the J=3←2 rotational transition of CO perturbed by N2 and O2, J. Mol. Struct. 517–518, 435–454.

    Article  Google Scholar 

  • Priem, D., Colmont, J.-M., Rohart, F., Wlodarczak, G., and Gamache, R. R., 2000b: Relaxation and lineshape of the 500.4-GHz line of ozone perturbed by N2 and O2, J. Mol. Spectrosc. 204, 204–215.

    Article  Google Scholar 

  • Pumphrey, H. C., and S. Buhler, 2000: Instrumental and spectral parameters: their effect on and measurements by microwave limb sounding of the atmosphere, J. Quant. Spectrosc. Radiat. Transfer. 64, 421–437.

    Article  Google Scholar 

  • Puzzarini, C., Dore, L., and Cazzoli, G., 2002: A comparison of lineshape models in the analysis of modulated and natural rotational line profiles: application to the pressure broadening of OCS and CO, J. Mol. Spectrosc. 216, 428–436.

    Article  Google Scholar 

  • Raffalski, U., Klein, U., Franke, B., Langer, J., Sinnhuber, B.-M., Trentmann, J., Künzi, K.-F., Schrems, O., 1998: Ground based millimeter-wave observations of Arctic chlorine activation during winter and spring 1996/97, Geophys Res Lett. 25, 3331–3334.

    Article  Google Scholar 

  • Reinartz, J.-M.-L.-J., Meerts, W. L., and Dymanus, A., 1978: Hyperfine structure, electric and magnetic properties of 14N216O in the ground and first excited bending vibrational state, Chem. Phys. 31, 19–29.

    Article  Google Scholar 

  • Ridal, M., Murtagh, D., Merino, F., Pardo, J. R., and Pagani, L., 2002: Microwave temperature and pressure measurements with the Odin satellite: II Retrieval method, Can. J. Phys., 80, 455–467.

    Article  Google Scholar 

  • Rinsland, C. P., Goldman, A., Smith, M. A. H., and Malathy Devi, V., 1991a: Measurements of Lorentz air-broadening coefficients and relative intensities in the H216O pure rotational and ν2 bands from long horizontal path atmospheric spectra, Appl. Opt. 30, 1427–1429.

    Google Scholar 

  • Rinsland, C. P., Smith, M. A. H., Malathy Devi, V., and Benner, D. Ch., 1991b: Measurements of Lorentz broadening coefficients and pressure induced line shifts coefficients in the ν2 band of D216O, J. Mol. Spectrosc. 150, 173–183.

    Article  Google Scholar 

  • Rinsland, C. P., Goldman, A., and Flaud, J.-M., 1992: Infrared spectroscopic parameters of COF2, SF6, ClO, N2 and O2, J. Quant. Spectrosc. Radiat. Transfer 48, 685–692.

    Article  Google Scholar 

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practise, Series on Atmospheric, Oceanic and Planetary Physics, 2, World Scientific Publ., February (2000).

  • Rohart, F., Colmont, J.-M., Wlodarczak, G., and Bouanich, J. P., 2003: N2- and O2-broadening coefficients and profiles for millimeter lines of 14N2O, J. Mol. Spectrosc. 222, 159–171.

    Article  Google Scholar 

  • Rosenkranz, P. W., 1998, 1999: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science 33, 919–928 (1998), (correction in 34, 1025, (1999)).

    Google Scholar 

  • Rothman, L. S., Goldman, A., Gillis, J. R., Gamache, R. R., Pickett, H. M., Poynter, R. L., Husson, N., and Chedin, A., 1983: AFGL trace gas compilation, Appl. Opt. 22, 1616–1627.

    Google Scholar 

  • Rothman, L. S., Gamache, R. R., Tipping, R. H., Rinsland, C. P., Smith, M. A. H., Benner, D., Malathy, Ch.,Devi, V., Flaud, J.-M., Camy-Peyret, C., Perrin, A., Goldman, A., Massie, S. T., Brown, L. R., and Toth, R. A., 1992: The HITRAN molecular database: editions of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transfer 48, 469–507.

    Article  Google Scholar 

  • Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J.-M., Perrin, A., Dana, V., Mandin, J.-Y., Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yoshimo, K., Chance, K., Jucks, K., Brown, L. R., Nemtchinov, V., and Varanasi, P., 1998: The HITRAN spectroscopic database and HAWKS (HITRAN Workstation): 1996 edition, J. Quant. Spectrosc. Radiat. Transfer 60, 665–710.

    Article  Google Scholar 

  • Rothman, L. S., Barbe, A., Benner, D. C., Brown, L. R., Camy-Peyret, C., Carleer, M. R., Chance, K., Clerbaux, C., Dana, V., Devi, V. M., Fayt, A., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Jucks, K. W., Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Nemtchinov, V., Newnham, D. A., Perrin, A., Rinsland, C. P., Schroeder, J., Smith, K. M., Smith, M. A., Tang, K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino, K., 2003: The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer 82, 5–44.

    Article  Google Scholar 

  • Sandor, B. J. and Clancy, R. T., 1997: Mesospheric observations and modeling of the Zeeman split 233.9 GHz 16O18O line, Geophys. Res. Lett. 24, 1631–1634.

    Article  Google Scholar 

  • Scharpen, L. H., Muenter, J. S., and Laurie, V. W., 1970: Electric polarizability anisotropies of nitrous oxide, propyne, and carbonyl sulfide by microwave spectroscopy, J. Chem. Phys. 53, 2513–2519.

    Article  Google Scholar 

  • Shorter, J. H., Nelson, D. D., and Zahniser, M. S., 1997: Air broadened linewidths in the ν2 band of HOCl, J. Chem. Soc., Faraday Trans. 93, 2933–2935.

    Google Scholar 

  • Singbeil, H. E. G., Anderson, W. D., Davis, R. W., Gerry, M. C. L., Cohen, E. A., Pickett, H. M., Lovas, F. J., and Suenram, R. R., 1984: The microwave and millimeter wave spectra of hypochlorous acid, J. Mol. Spectrosc. 103, 466–485.

    Article  Google Scholar 

  • Steinbach, W. and Gordy, W., 1975: Microwave spectrum and molecular constants of 16O18O, Phys. Rev. A11, 729–731.

    Google Scholar 

  • Teffo, J.-L., Perevalov, V. I., and Lyulin, O. M., 1994: Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of nitrous oxide, J. Mol. Spectrosc. 168, 390–403.

    Article  Google Scholar 

  • Tejwani, G. D. T., 1972: Calculation of pressure-broadened linewidths of SO2 and NO2”, J. Chem. Phys. 57, 4676–4682.

    Article  Google Scholar 

  • Tejwani, G. D. T., and Yeung, E. S., 1977: Pressure-broadened linewidths of formaldehyde, J. Chem. Phys. 66, 491–492.

    Article  Google Scholar 

  • Tejwani, G. D. T., and Yeung, E. S., 1978: Pressure broadened linewidths of HNO3, J. Chem Phys. 68, 2012–2013.

    Article  Google Scholar 

  • Tipping, R. H. and Ma, Q., 1995: Theory of water vapor continuum and validations, Atm. Res. 36, 69–94.

    Article  Google Scholar 

  • Titz, R., Birk, M., Hausamann, D., Nitsche, R., Schreier, F., Urban, J., Küllmann, H., and Röser, H., 1995: Observation of stratospheric OH at 2.5 THz with an airborne heterodyne system, Infrared Phys Technol 36, 883–891.

    Article  Google Scholar 

  • Toth, R. A., 1993a: The ν1 - ν2, ν3 - ν2, ν1, and ν3 bands of H216O: line positions and strengths, J. Opt. Soc. Am B 10, 2006–2029.

    Google Scholar 

  • Toth, R. A., 1993b: The. ν2 - ν2 and 2 ν2 bands of H216O, H217O and H218O: line positions and strengths, J. Opt. Soc. Am B 10, 1526–1544.

    Google Scholar 

  • Toth, R. A., 1993c: Line strengths (900–3600 cm-1), self broadened linewidths, and frequency shift (1800–2360 cm-1) of N2O, Appl. Opt. 32, 7326–7365.

    Google Scholar 

  • Toth, R. A.. 1998: Water vapor measurements between 590 and 2582 cm-1: Line positions and strengths, J. Mol. Spectrosc. 190, 379–396.

    Article  PubMed  Google Scholar 

  • Tretyakov, M.Yu., Parshin, V. V., Koshelev, M. A., V. N.Shanin, Myasnikova, S. E., and Krupnov, A. F., 2003: Studies of the 183 GHz line: broadening and shifting by air, N2 and O2 and integral intensity measurements, J. Mol. Spectrosc. 218, 239–245.

    Article  Google Scholar 

  • Tretyakov, M. Yu, Golubiatnikov, G. Yu, Parshin, V. V., Koshelev, M. A., Myasnikova, S. E., Krupnov, A. F., and Rosenkranz, P. W., 2004: Experimental study of the line mixing coefficient for 118.75 GHz oxygen line, J. Mol. Spectrosc. 223, 31–38.

    Article  Google Scholar 

  • Urban, J., Baron, Lautié, P., Schneider, N., Dassas, K., Ricaud, P., De La Noë, J., 2004: Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range, J. Quant. Spectrosc. Radiat. Transfer. 83, 529–554.

    Article  Google Scholar 

  • Verdes, C. L.,von Engen, A., Buehler, S. A., Perrin, A., 2004: Partition function data and impact on retrieval quality for an mm/sub-mm limb sounder, J. Quant. Spectrosc. Radiat. Transfer. 90, 217–238.

    Article  Google Scholar 

  • Verdes, C. L., Buehler, S. A., Perrin, A., Flaud, J.-M., Demaison, J., Wlodarczak, G., Colmont, J.-M., Cazzoli, G., and Puzzarini, C., 2005: A sensitive study on spectroscopic parameters accuracies for a mm/sub-mm limb sounder instrument, J. Mol. Spectrosc. 229, 266–275.

    Article  Google Scholar 

  • Wagner, W., Birk, M., Schreier, F., and Flaud, J.-M., 2002: Spectroscopic data base of the three ozone fundamentals, J. Geophys. Res. D107, ACH10-1-10-18.

    Google Scholar 

  • Watson, J. K. G., 1977: Aspects of quartic and sextic centrifugal effects on rotational energy levels, J.Durig ed., in Vibrational spectra and structure, 1–89, Elsevier, Amsterdam, Netherlands.

  • Winnewisser, G., Belov, S. P., Klauss, Th., and Schieder, R., 1997: Subdoppler measurements on the rotational transitions of carbon monoxide, J. Mol. Spectrosc. 184, 468–472.

    Article  Google Scholar 

  • Wlodarczak, G., Segard, B., Legrand, J., and Demaison, J., 1985a: The dipole moment of CH335Cl, microwave and submillimeter wave spectrum of methyl chloride, J. Mol. Spectrosc. 111, 204–206.

    Article  Google Scholar 

  • Wlodarczak, G., Herlemont, F., Demaison, J., Fayt, A., and Lahaye, J. G., 1985b: Combined subdoppler laser-Stark and millimeter wave spectroscopies, J. Mol. Spectrosc. 112, 401–412.

    Article  Google Scholar 

  • Wlodarczak, G., Boucher, D., Bocquet, R., and Demaison, J., 1986: The microwave and submillimeter wave spectrum of methyl chloride, J. Mol. Spectrosc. 116, 251–255.

    Article  Google Scholar 

  • Yaron, D., Peterson, K., and Klemperer, W., 1988: On the dipole moment functions of ClO and OH, J. Chem. Phys. 88, 4702–4710.

    Article  Google Scholar 

  • Yamada, M. M., Koboyashi, M., Habara, H., Amano, T., and Drouin, B. J., 2003: Submillimeter-wave measurements of the pressure broadening of BrO, J. Quant. Spectrosc. Radiat. Transfer 82, 391–399.

    Article  Google Scholar 

  • Zink, L. R., and Mizushima, M., 1987: Pure rotational far-infrared transitions of 16O2 in its electronic and vibrational ground state, J. Mol. Spectrosc. 125, 154–158.

    Article  Google Scholar 

  • Zu, L., Hamilton, P. A., and Davies, P. B., 2002: Pressure broadening and frequency measurements of nitric acid lines in the 683 GHz region, J. Quant. Spectrosc. Radiat. Transfer. 73, 545–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Perrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, A., Puzzarini, C., Colmont, JM. et al. Molecular Line Parameters for the “MASTER” (Millimeter Wave Acquisitions for Stratosphere/Troposphere Exchange Research) Database. J Atmos Chem 51, 161–205 (2005). https://doi.org/10.1007/s10874-005-7185-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-005-7185-9

Key words

Navigation