Skip to main content
Log in

On Chudnovsky–Ramanujan type formulae

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In a well known 1914 paper, Ramanujan gave a number of rapidly converging series for \(1/\pi \) which are derived using modular functions of higher level. Chudnovsky and Chudnovsky in their 1988 paper derived an analogous series representing \(1/\pi \) using the modular function J of level 1, which results in highly convergent series for \(1/\pi \), often used in practice. In this paper, we explain the Chudnovsky method in the context of elliptic curves, modular curves, and the Picard–Fuchs differential equation. In doing so, we also generalize their method to produce formulae which are valid around any singular point of the Picard–Fuchs differential equation. Applying the method to the family of elliptic curves parameterized by the absolute Klein invariant J of level 1, we determine all Chudnovsky–Ramanujan type formulae which are valid around one of the three singular points: \(0, 1, \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Archinard, N.: Exceptional sets of hypergeometric series. J. Number Theory 101, 244–269 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, J., Borwein, P.: Pi and the AGM. Wiley, New York (1987)

    MATH  Google Scholar 

  4. Chan, H.H., Verrill, H.: The Apéry numbers, the Almkvist-Zudilin numbers and new series for \(1/\pi \). Math. Res. Lett. 16, 405–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chowla, S., Selberg, A.: On Epstein’s zeta-function. J. Reine Angew. Math. 227, 86–110 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Chudnovsky, D.V., Chudnovsky, G.V.: Approximation and complex multiplication according to Ramanujan. In: Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, K.G., Rankin, R.A. (eds.) Ramanujan Revisited, pp. 375–472. Academic Press, Boston (1988)

    Google Scholar 

  7. Chudnovsky, D.V., Chudnovsky, G.V.: Use of computer algebra for Diophantine and differential equations, In: Chudnovsky, D.V., Jenks, R.D. (eds.) Computer Algebra, Lecture Notes in Pure and Appl. Math. 113, pp. 1–81. Dekker, New York (1989)

  8. Cox, D.: Primes of the Form \(x^2 + ny^2\): Fermat, Class Field Theory, and Complex Multiplication, 2nd edn. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  9. Fricke, R., Klein, F.: Vorlesungen über die Theorie der elliptischen Modulfunctionen. Teubner, Leipzig (1890)

    Google Scholar 

  10. Greenhill, A.G.: The Applications of Elliptic Functions. Macmillan and Co., New York (1892)

    MATH  Google Scholar 

  11. Kummer, E.E.: Über die hypergeometrische Reihe. J. Reine Angew. Math. 15, 39–83, 127–172 (1836)

  12. Lang, S.: Elliptic Functions, 2nd edn. Springer, New York (1987)

    Book  MATH  Google Scholar 

  13. Ramanujan, S.: Modular equations and approximations to \(\pi \). Q. J. Math. (Oxford) 45, 350–372 (1914)

    MATH  Google Scholar 

  14. Ramanujan, S.: On certain arithmetical functions. Trans. Camb. Phil. Soc. 22, 159–184 (1916)

    Google Scholar 

  15. Ramanujan, S.: Collected Papers. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  16. Serre, J.-P.: Congruences et formes modulaire (d’après H. P. F. Swinnerton-Dyer), Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Math. 317, pp. 319–338. Springer, Berlin (1973)

  17. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  18. Weber, H.: Lehrbuch der Algebra, vol. III, 2nd edn. Vieweg, Braunschwieg (1908)

  19. Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 2nd edn. Cambridge University Press, Cambridge (1915)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Glebov.

Additional information

This work was supported by an NSERC Discovery Grant and SFU VPR Bridging Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, I., Glebov, G. On Chudnovsky–Ramanujan type formulae. Ramanujan J 46, 677–712 (2018). https://doi.org/10.1007/s11139-017-9948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9948-8

Keywords

Mathematics Subject Classification

Navigation