Skip to main content
Log in

Non-vanishing of Taylor coefficients and Poincaré series

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We prove recursive formulas for the Taylor coefficients of cusp forms, such as Ramanujan’s Delta function, at points in the upper half-plane. This allows us to show the non-vanishing of all Taylor coefficients of Delta at CM points of small discriminant as well as the non-vanishing of certain Poincaré series. At a “generic” point, all Taylor coefficients are shown to be non-zero. Some conjectures on the Taylor coefficients of Delta at CM points are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, E., Miezaki, T.: Toy models for D.H. Lehmer’s conjecture. J. Math. Soc. Jpn. 62(3), 687–705 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosman, J.: On the computation of Galois representations associated to level one modular forms. Preprint, arXiv:0710.1237, October 2007

  3. Brakočević, M.: Anticyclotomic p-adic l-function of central critical Rankin–Selberg l-value. Int. Math. Res. Not. 2011(21), 4967–5018 (2011)

    MATH  Google Scholar 

  4. Bruinier, J.H., James, K., Kohnen, W., Ono, K., Skinner, C., Vatsal, V.: Congruence properties of values of L-functions and applications. In: Topics in Number Theory, University Park, PA, 1997. Math. Appl., vol. 467, pp. 115–125. Kluwer Academic, Dordrecht (1999)

    Chapter  Google Scholar 

  5. Bruinier, J.H., van der Geer, G., Harder, G., Zagier, D., Ranestad, K.: The 1-2-3 of Modular Forms. Universitext. Springer, Berlin (2008). Lectures at a Summer School in Nordfjordeid, Norway

    MATH  Google Scholar 

  6. Datskovsky, B., Guerzhoy, P.: p-adic interpolation of Taylor coefficients of modular forms. Math. Ann. 340(2), 465–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gaigalas, E.: Poincaré series. Lith. Math. J. 24(3), 239–241 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gandhi, J.M.: The nonvanishing of Ramanujan’s τ-function. Am. Math. Mon. 68(8), 757–760 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hida, H.: Central critical values of modular Hecke L-function. Kyoto J. Math. 50(4), 777–826 (2010). Memorial Volume of Masayoshi Nagata

    Article  MathSciNet  MATH  Google Scholar 

  10. Imamoḡlu, Ö., O’Sullivan, C.: Parabolic, hyperbolic and elliptic Poincaré series. Acta Arith. 139(3), 199–228 (2009)

    Article  MathSciNet  Google Scholar 

  11. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  12. Iwaniec, H.: Spectral methods of automorphic forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. Am. Math. Soc., Providence (2002)

    MATH  Google Scholar 

  13. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. Am. Math. Soc., Providence (2004)

    MATH  Google Scholar 

  14. Jacquet, H.: Sur un résultat de Waldspurger. II. Compos. Math. 63(3), 315–389 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Jacquet, H., Chen, N.: Positivity of quadratic base change L-functions. Bull. Soc. Math. Fr. 129(1), 33–90 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Lehmer, D.H.: The vanishing of Ramanujan’s function τ(n). Duke Math. J. 14, 429–433 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lehner, J.: On the nonvanishing of Poincaré series. Proc. Edinb. Math. Soc. (2) 23(2), 225–228 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martin, K., Whitehouse, D.: Central L-values and toric periods for GL(2). Int. Math. Res. Not. 2009(1), 141–191 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Metzger, T.A.: On the non-vanishing of certain Poincaré series. Math. Z. 175(2), 165–170 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mori, A.: Power series expansions of modular forms at CM points. Rend. Semin. Mat. (Torino) 53(4), 361–374 (1995). Number theory, II (Rome, 1995)

    MATH  Google Scholar 

  21. Mori, A.: Power series expansions of modular forms and their interpolation properties. Int. J. Number Theory 7(2), 529–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mozzochi, C.J.: On the nonvanishing of Poincaré series. Proc. Edinb. Math. Soc. (2) 32(1), 131–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petersson, H.: Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art. Abh. Math. Sem. Hansischen Univ. 14, 22–60 (1941)

    Article  MathSciNet  Google Scholar 

  24. Petersson, H.: Ein Summationsverfahren für die Poincaréschen Reihen von der Dimension −2 zu den hyperbolischen Fixpunktepaaren. Math. Z. 49, 441–496 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petersson, H.: Über Weierstraßpunkte und die expliziten Darstellungen der automorphen Formen von reeller Dimension. Math. Z. 52, 32–59 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rankin, F.K.C., Swinnerton-Dyer, H.P.F.: On the zeros of Eisenstein series. Bull. Lond. Math. Soc. 2, 169–170 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rankin, R.A.: The vanishing of Poincaré series. Proc. Edinb. Math. Soc. (2) 23(2), 151–161 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reznikov, A.: Rankin–Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. J. Amer. Math. Soc. (2007)

  29. Sarnak, P.: Integrals of products of eigenfunctions. Int. Math. Res. Not. 1994(6), 251–260 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Publ. Math. IHÉS 54, 323–401 (1981)

    Google Scholar 

  31. Serre, J.-P.: Sur la lacunarité des puissances de η. Glasg. Math. J. 27, 203–221 (1985)

    Article  MATH  Google Scholar 

  32. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11. Princeton University Press, Princeton (1994). Reprint of the 1971 original, Kanô Memorial Lectures, 1

    MATH  Google Scholar 

  33. Villegas, F.R., Zagier, D.: Square roots of central values of Hecke L-series. In: Advances in Number Theory, Kingston, ON, 1991. Oxford Sci. Publ., pp. 81–99. Oxford University Press, New York (1993)

    Google Scholar 

  34. Waldspurger, J.-L.: Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2). Compos. Math. 54(2), 121–171 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Sullivan.

Additional information

The second author was supported by a grant from The Danish Natural Science Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Sullivan, C., Risager, M.S. Non-vanishing of Taylor coefficients and Poincaré series. Ramanujan J 30, 67–100 (2013). https://doi.org/10.1007/s11139-012-9374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-012-9374-x

Keywords

Mathematics Subject Classification (2000)

Navigation