Skip to main content
Log in

An exact formula for a Lambert series associated to a cusp form and the Möbius function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In 1981, Zagier conjectured that the constant term of the automorphic form \( y^{12}|\Delta (z)|^2\), that is, \( a_0(y):=y^{12} \sum _{n=1}^{\infty } \tau ^2(n) \exp ({-4 \pi ny}), \) where \(\tau (n)\) is the nth Fourier coefficient of the Ramanujan cusp form \(\Delta (z)\), has an asymptotic expansion when \(y \rightarrow 0^{+}\) and it can be expressed in terms of the non-trivial zeros of the Riemann zeta function \(\zeta (s)\). This conjecture was settled by Hafner and Stopple, and later Chakraborty, Kanemitsu, and the second author have extended this result for any Hecke eigenform over the full modular group. In this paper, we investigate a Lambert series associated to the Fourier coefficients of a cusp form and the Möbius function \(\mu (n)\). We present an exact formula for the Lambert series and interestingly the main term is in terms of the non-trivial zeros of \(\zeta (s)\), and the error term is expressed as an infinite series involving the generalized hypergeometric series \({}_2F_1(a,b;c;z)\). As an application of this exact form, we also establish an asymptotic expansion of the Lambert series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee, S., Chakraborty, K.: Asymptotic behaviour of a Lambert series á la Zagier: Maass case. Ramanujan J. 48, 567–575 (2019)

    Article  MathSciNet  Google Scholar 

  2. Berndt, B.C.: Ramanujan’s Notebooks. Part V. Springer, New York (1998)

    Book  Google Scholar 

  3. Bhaskaran, R.: On the Versatility of Ramanujan’s Ideas, Ramanujan Visiting Lectures, Technical Report 4. Madurai Kamraj University, pp. 118–129 (1997)

  4. Bochner, S.: Some properties of modular relations. Ann. Math. 2(53), 332–363 (1951)

    Article  MathSciNet  Google Scholar 

  5. Bui, H.M., Heath-Brown, D.R.: On simple zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 45, 953–961 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chakraborty, K., Kanemitsu, S., Maji, B.: Modular-type relations associated to the Rankin–Selberg \(L\)-function. Ramanujan J. 42, 285–299 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chakraborty, K., Juyal, A., Kumar, S.D., Maji, B.: An asymptotic expansion of a Lambert series associated to cusp forms. Int. J. Number Theory 14, 289–299 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chandrasekharan, K., Narasimhan, R.: Hecke’s functional equation and arithmetical identities. Ann. Math. 74, 1–23 (1961)

    Article  MathSciNet  Google Scholar 

  9. Conrey, J.B., Ghosh, A., Gonek, S.M.: Simple zeros of the Riemann zeta-function. Proc. Lond. Math. Soc. 76, 497–522 (1998)

    Article  MathSciNet  Google Scholar 

  10. Dixit, A.: Character analogues of Ramanujan-type integrals involving the Riemann \(\Xi \)-function. Pac. J. Math. 255, 317–348 (2012)

    Article  MathSciNet  Google Scholar 

  11. Dixit, A.: Analogues of the general theta transformation formula. Proc. Roy. Soc. Edinb. Sect. A 143, 371–399 (2013)

    Article  MathSciNet  Google Scholar 

  12. Dixit, A., Roy, A., Zaharescu, A.: Ramanujan–Hardy–Littlewood–Riesz phenomena for Hecke forms. J. Math. Anal. Appl. 426, 594–611 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fujii, A.: On the distribution of the values of the derivative of the Riemann zeta function at its zeros (I). Proc. Steklov Inst. Math. 276, 51–76 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gonek, S.M.: Mean values of the Riemann zeta function and its derivatives. Invent. Math. 75, 123–141 (1984)

    Article  MathSciNet  Google Scholar 

  15. Hafner, J., Stopple, J.: A heat kernel associated to Ramanujan’s tau function. Ramanujan J. 4, 123–128 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hardy, G.H., Littlewood, J.E.: Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41, 119–196 (1916)

    Article  MathSciNet  Google Scholar 

  17. Hejhal, D.A.: On the distribution of \( | \log \zeta ^{\prime } (1/2 + it)|\), in number theory, trace formulas, and discrete groups. In: Aubert, K.E., Bombieri, E., Goldfeld, D.M. (eds.) Proc. 1987 Selberg Symposium. Academic Press, pp. 343–370 (1989)

  18. Hiary, G.A., Odlyzko, A.M.: Numerical study of the derivative of the Riemann zeta function at zeros. Commentarii Mathematici Universitatis Sancti Pauli 60, 47–60 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, Providence (2004)

    MATH  Google Scholar 

  20. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  21. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals, Encyclopedia of Mathematics and Its Applications, vol. 85. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Rankin, R.A.: Contributions to the theory of Ramanujan’s function \(\tau (n)\) and similar arithmetical functions, I, II. Proc. Camb. Philos. Soc. 35, 351–372 (1939)

    Article  Google Scholar 

  23. Roy, A., Zaharescu, A., Zaki, M.: Some identities involving convolutions of Dirichlet characters and the Möbius function. Proc. Indian Acad. Sci. Math. Sci. 126, 21–33 (2016)

    Article  MathSciNet  Google Scholar 

  24. Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. 43, 47–50 (1940)

    MathSciNet  MATH  Google Scholar 

  25. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. Ser. 31, 79–98 (1975)

    Article  MathSciNet  Google Scholar 

  26. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  27. Zagier, D.: The Rankin–Selberg method for automorphic functions which are not of rapid decay. J. Fac. Sci. Univ. Tokyo IA Math. 28, 415–437 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Zagier, D.: Introduction to Modular Forms, From Number Theory to Physics (Les Houches, 1989), pp. 238–291. Springer, New York (1989)

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Prof. Steven Gonek for giving information about the manuscripts [5, 9] and for giving important suggestions. We would also like to thank Prof. Atul Dixit for going through the manuscript and giving valuable suggestions. The second author wishes to thank SERB for the Start-Up Research Grant SRG/2020/000144. The third author wants to thank Prof. B. R. Shankar for his continuous support. His research is funded by the National Institute of Technology Karnataka, India. The authors would also like to thank the referee for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibekananda Maji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juyal, A., Maji, B. & Sathyanarayana, S. An exact formula for a Lambert series associated to a cusp form and the Möbius function. Ramanujan J 57, 769–784 (2022). https://doi.org/10.1007/s11139-020-00375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00375-7

Keywords

Mathematics Subject Classification

Navigation