Skip to main content
Log in

Separating gains and losses in health when calculating the minimum important difference for mapped utility measures

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Objective

To estimate the minimum important difference (MID) for a variety of mapped utility measures and to determine whether patients perceiving gains and losses in health status should be treated equally when calculating the MID.

Methods

A longitudinal study within a California managed care population of 6,932 patients was retrospectively analyzed. Utilities were derived from the SF-36 short-form health survey using multiple validated mapping methods. Absolute utility changes for patients who considered their current health as ‘somewhat better’ or ‘somewhat worse’ in the prior year were compared to determine if gains and losses in utility values could be combined. The MIDs were calculated and compared using anchor- and distribution-based methods.

Results

Two thousand one hundred patients reported ‘somewhat better’ or ‘somewhat worse’ health in the first year. When combining these patients, the average MID for all mapped utility measures was 0.03 (SD = 0.1), a magnitude similar to that identified by Walters. However, when separated, the mean MID utility change for those reporting ‘somewhat better’ and ‘somewhat worse’ health was 0.02 (SD = 0.1) and −0.06 (SD = 0.1), respectively (P < 0.0001).

Conclusions

Researchers should consider the effects of combining gains and losses when determining utility MID values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CDS:

Chronic Disease Score

CEA:

Cost-effectiveness analysis

ES:

Effect size

FACT:

Functional Assessment of Cancer Therapy

FDA:

Food and Drug Administration

HrQoL:

Health-related quality of life

HUI2:

Health Utilities Index Mark 2

MID:

Minimum important difference

PRO:

Patient-reported outcome

QALY:

Quality-adjusted life year

SEM:

Standard error of measurement

SD:

Standard deviation

SG:

Standard gamble

VAS:

Visual analog scale

References

  1. Food and Drug Administration. (FDA) (2006). Guidance for industry: patient-reported outcomes measures: use in medical product development to support labeling claims: draft guidance. FDA, Rockville, MD. Available online at: http://www.fda.gov/cder/guidance/5460dft.pdf#search=%91draft%20guidance%20fda%20patient%20reported%20outcomes

  2. Torrance, G. W., & Feeny, D. (1989). Utilities and quality-adjusted life years. International Journal of Technology Assessment in Health Care, 5, 559–575.

    PubMed  CAS  Google Scholar 

  3. Gold, M. R., Siegel, J. E., Rusell, L. B., & Weinstein, M. C. (1996). Cost-effectiveness in health and medicine. Oxford: Oxford University Press.

    Google Scholar 

  4. Wyrwich, K. W., Bullinger, M., Aaronson, N., Hays, R. D., Patrick, D. L., & Symonds, T. (2005). Estimating clinically significant differences in quality of life outcomes. Quality of Life Research, 14, 285–295. doi:10.1007/s11136-004-0705-2.

    Article  PubMed  Google Scholar 

  5. Lydick, E., & Epstein, R. S. (1993). Interpretation of quality of life changes. Quality of Life Research, 2, 221–226. 10.1007/BF00435226.

    Article  PubMed  CAS  Google Scholar 

  6. Revicki, D. A., Cella, D., Hays, R. D., Sloan, J. A., Lenderking, W. R., & Aaronson, N. K. (2006). Responsiveness and minimal important differences for patient reported outcomes. Health and Quality of Life Outcomes, 4, 70–74. doi:10.1186/1477-7525-4-70.

    Article  PubMed  Google Scholar 

  7. Kazis, L. E., Anderson, J. J., & Meenan, R. F. (1989). Effect sizes for interpreting changes in health status. Medical Care, 27(Suppl.), S178–S189. doi:10.1097/00005650-198903001-00015

    Article  PubMed  CAS  Google Scholar 

  8. Wyrwich, K. W., Tierney, W., & Wolinsky, F. D. (1999). Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. Journal of Clinical Epidemiology, 52, 861–873. doi:10.1016/S0895-4356(99)00071-2.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edn.). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  10. Norman, G. R., Sloan, J. A., & Wyrwich, K. W. (2003). Interpretation of changes in health-related quality of life: The remarkable universality of half a standard deviation. Medical Care, 14(5), 582–592. doi:10.1097/00005650-200305000-00004.

    Article  Google Scholar 

  11. Ross, M. (1989). Relation of implicit theories to the construction of personal histories. Psychological Review, 96, 341–357. doi:10.1037/0033-295X.96.2.341.

    Article  Google Scholar 

  12. Guyatt, G. H., Norman, G. R., Juniper, E. F., & Griffith, L. E. (2002). A critical look at transition ratings. Journal of Clinical Epidemiology, 55, 900–908. doi:10.1016/S0895-4356(02)00435-3.

    Article  PubMed  Google Scholar 

  13. Sprangers, M. A. G., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: A theoretical model. Social Science and Medicine, 48, 1507–1515. doi:10.1016/S0277-9536(99)00045-3.

    Article  PubMed  CAS  Google Scholar 

  14. Guyatt, G. H., Osoba, D., Wu, A. W., Wywrich, K. W., & Norman, G. R.; Clinical Significance Consensus Meeting Group. (2002). Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77(4), 371–383.

    Article  PubMed  Google Scholar 

  15. Walters, S. J., & Brazier, J. E. (2005). Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Quality of Life Research, 14, 1523–1532. doi:10.1007/s11136-004-7713-0.

    Article  PubMed  Google Scholar 

  16. Cella, D., Hahn, E. A., & Dineen, K. (2002). Meaningful change in cancer-specific quality of life scores: Differences between improvement and worsening. Quality of Life Research, 11, 207–221. doi:10.1023/A:1015276414526.

    Article  PubMed  Google Scholar 

  17. Lundberg, L., Johannesson, M., Isacson, D. G. L., & Borgquist, L. (1999). The relationship between health-state utilities and the SF-12 in a general population. Medical Decision Making, 19(2), 128–140. doi:10.1177/0272989X9901900203.

    Article  PubMed  CAS  Google Scholar 

  18. Shmueli, A. (2004). The relationship between the visual analog scale and the SF-36 scales in the general population: An update. Medical Decision Making, 24(1), 61–63. doi:10.1177/0272989X03261562.

    Article  PubMed  Google Scholar 

  19. Von Korff, M., Wagner, E. H., & Saunders, K. (1992). A chronic disease score from automated pharmacy data. Journal of Clinical Epidemiology, 45, 197–203. doi:10.1016/0895-4356(92)90016-G.

    Article  Google Scholar 

  20. Walters, S. J., & Brazier, J. E. (2003). What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. Health and Quality of Life Outcomes, 1, 4–11. doi:10.1186/1477-7525-1-4.

    Article  PubMed  Google Scholar 

  21. Ware, J. E., & Kosinski, M. (2001). The SF-36 physical and mental health summary scales. A manual for users of version 1, 2nd edn. Lincoln, RI: QualityMetric Incorporated.

    Google Scholar 

  22. Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292. doi:10.1016/S0167-6296(01)00130-8.

    Article  PubMed  Google Scholar 

  23. Nichol, M. B., Sengupta, N., & Globe, D. R. (2001). Evaluating quality-adjusted life years: Estimation of the health utility index (HUI2) from the SF-36. Medical Decision Making, 21, 105–112. doi:10.1177/02729890122062352.

    Article  PubMed  CAS  Google Scholar 

  24. Yost, K. J., Cella, D., Chawla, A., Holmgren, E., Eton, T., Ayanian, J. Z., West, D. W. (2005). Minimally important differences were estimated for the Functional Assessment of Cancer Therapy-Colorectal (FACT-C) instrument using a combination of distribution- and anchor-based approaches. Journal of Clinical Epidemiology, 58, 1241–1251. doi:10.1016/j.jclinepi.2005.07.008.

    Article  PubMed  CAS  Google Scholar 

  25. Pickard, A. S., Wang, Z., Walton, S. M., & Lee, T. A. (2005). Are decisions using cost-utility analyses robust to choice of SF-36/SF-12 preference-based algorithm? Health and Quality of Life Outcomes, 3, 11–19. doi:10.1186/1477-7525-3-11.

    Article  PubMed  Google Scholar 

  26. Brissette, I., Leventhal, H., & Leventhal, E. A. (2003). Observer ratings of health and sickness: Can other people tell us anything about our health that we don’t already know? Health Psychology, 22, 471–478. doi:10.1037/0278-6133.22.5.471.

    Article  PubMed  Google Scholar 

  27. Brissette, I., Scheier, M. F., & Carver, C. S. (2002). The role of optimism in social network development, coping, and psychological adjustment during a life transition. Journal of Personality and Social Psychology, 82, 102–111. doi:10.1037/0022-3514.82.1.102.

    Article  PubMed  Google Scholar 

  28. Wyrwich, K. W., Metz, S. M., Babu, A. N., Kroenke, K., Tierney, W. M., & Wolinsky, F. D. (2002). The reliability of retrospective change assessments. Quality of Life Research, 11(7), 636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Nichol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichol, M.B., Epstein, J.D. Separating gains and losses in health when calculating the minimum important difference for mapped utility measures. Qual Life Res 17, 955–961 (2008). https://doi.org/10.1007/s11136-008-9369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-008-9369-7

Keywords

Navigation