Skip to main content
Log in

Functional Properties of Grape and Wine Polyphenols

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Grape berries polyphenols are mainly synthesized in the skin tissues and seeds and they are extracted during the winemaking process. These substances have a potentially positive effect, on human health, thus giving to grape and red wine “functional properties” that can contribute to prevent a number of human illness. Nevertheless, the research community is showing that the real effect is a result of a combination of different factors, notably daily intake, bioavailability, or in vivo antioxidant activity that are yet to be resolved. Viticulture and winemaking practices, determine the concentration of polyphenols in grape and wine. To date, reduced knowledge is existing on the effects of different yeast strains on the final concentration of polyphenols in red wine. We summarize the recent findings concerning the effects of polyphenols on human chronic disease and the future directions for research to increase the amount of these compounds in wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PAL:

Phenylalanine Ammonia Lyase

C4H:

Cinnamate 4-Hydroxylase

4CL:

4-Hydroxy-Cinnamoyl CoA Ligase

CHS:

Chalcone Syntase

CHI:

Chalcone Isomerase

STS:

Stilbene Synthase

IFH:

Isoflavon Hydroxylase

IFR:

Isoflavon Reductase

F3H:

Flavanone 3-Hydroxylase

F3’5’H:

Flavonoid-3′ 5′-Hydroxylase

DFR:

Dihydroflavonol Reductase

ANS:

Anthocyanidins Synthase

ANR:

Anthocyanidins Reductase

3-GT:

3-Glucosyltransferase

OMT:

OxyMethyl-Transferase

ROS:

Reactive Oxygen Species

References

  1. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  Google Scholar 

  2. Iriti M, Faoro F (2009) Chemical diversity and defense metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  CAS  Google Scholar 

  3. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  Google Scholar 

  4. Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, et al. (2010) Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol 154:1439–1459

    Article  CAS  Google Scholar 

  5. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  6. Ali K, Maltese F, Choi Y, Verpoorte R (2010) Metabolic constituents of grapevine and grape- derived products. Phytochem Rev 9:357–378

    Article  CAS  Google Scholar 

  7. Ananga A, Georgiev V, Tsolova V (2013) Manipulation and engineering of metabolic and biosynthetic pathway of plant polyphenols. Curr Pharm Des 19:6186–6206

    Article  CAS  Google Scholar 

  8. Nassiri-Asl M, Hosseinzadeh H (2009) Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytother Res 23:1197–1204

    Article  CAS  Google Scholar 

  9. Xia E-Q, Deng G-F, Guo Y-J, Li H-B (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646

    Article  CAS  Google Scholar 

  10. He F, Mu L, Yan G-L, Liang N-N, Pan Q-H, et al. (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  CAS  Google Scholar 

  11. Jandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, et al. (2002) Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  Google Scholar 

  12. Zhu L, Zhang Y, Lu J (2012) Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int J Mol Sci 13:3492–3510

    Article  CAS  Google Scholar 

  13. Cantos E, Espín JC, Tomás-Barberán FA (2002) Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC–DAD–MS–MS. J Agric Food Chem 50:5691–5696

    Article  CAS  Google Scholar 

  14. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2007) Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J Agric Food Chem 55:992–1002

    Article  Google Scholar 

  15. Mattivi F, Zulian C, Nicolini G, Valenti L (2002) Wine, biodiversity, technology, and antioxidants. Ann N Y Acad Sci 957:37–56

    Article  CAS  Google Scholar 

  16. Paixao N, Pereira V, Marques JC, Camara JS (2008) Quantification of polyphenols with potential antioxidant properties in wines using reverse phase HPLC. J Sep Sci 31:2189–2198

    Article  CAS  Google Scholar 

  17. Liang Z, Cheng L, Zhong GY, Liu RH (2014) Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes. PLoS One 9:e105146

    Article  Google Scholar 

  18. Huseynova IM (2012) Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochem Biophys Acta 1817:1516–1523

    CAS  Google Scholar 

  19. Giovinazzo G, D'Amico L, Paradiso A, Bollini R, Sparvoli F, et al. (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69

    Article  CAS  Google Scholar 

  20. Giovinazzo G, Ingrosso I, Paradiso A, De Gara L, Santino A (2012) Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Foods Hum Nutr 7(3):191–199

    Article  Google Scholar 

  21. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  22. Szajdek A, Borowska EJ (2008) Bioactive compounds and healthpromoting properties of berry fruits: a review. Plant Foods Hum Nutr 63:147–156

    Article  CAS  Google Scholar 

  23. Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemo attractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem 20:521–529

    Article  CAS  Google Scholar 

  24. Dai J, Mumper RJP (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  Google Scholar 

  25. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  26. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  Google Scholar 

  27. Calabriso N, Scoditti E, Massaro M, Pellegrino M Storelli C et al. (2015) Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenoids on endothelial inflammatory gene expression Eur J Nutr. doi:10.1007/s00394-015-0865-6

  28. Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46

    Article  CAS  Google Scholar 

  29. Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-κB activation pathway by spice derived phytochemicals, reasoning for seasoning. Ann N Y Acad Sci 1030:434–441

    Article  CAS  Google Scholar 

  30. Vauzour D, Tejera N, O'Neill C, et al. (2015) Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans. J Nutr Biochem 26:211–218

    Article  CAS  Google Scholar 

  31. Viňa J, Gomez-Cabrera MC, Borras C (2007) Fostering antioxidant defences, up-regulation of antioxidant genes or antioxidant supplementation? Br J Nutr 98:S36–S40

    Google Scholar 

  32. Mink PJ, Scrafford CG, Barraj LM, et al. (2007) Flavonoid intake and cardiovascular disease mortality, a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909

    CAS  Google Scholar 

  33. Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents, antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517

    Article  CAS  Google Scholar 

  34. Soobrattee MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35

    Article  CAS  Google Scholar 

  35. Fink BN, Steck SE, Wolff MS, et al. (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165:514–523

    Article  Google Scholar 

  36. Cai H, Sale S, Britton RG, Brown K, Steward WP, et al. (2011) Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3,4,5,5,7-pentamethoxyflavone and tricin (4,5,7-trihydroxy-3,5-dimethoxyflavone). Cancer Chemother Pharmacol 67:255–263

    Article  CAS  Google Scholar 

  37. Pearson KJ, Baur JA, Lewis KN, et al. (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  CAS  Google Scholar 

  38. Soleas GJ, Diamandis EP, Goldberg DM (2001) The world of resveratrol. Adv Exp Med Biol 492:159–182

    Article  CAS  Google Scholar 

  39. Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol, mechanistic perspectives. Cancer Lett 269:243–261

    Article  CAS  Google Scholar 

  40. Sharma S, Chopra K, Kulkarni SK (2007) Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain, participation of nitric oxide F TNF-alpha. Phytother Res 21:278–283

    Article  CAS  Google Scholar 

  41. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, et al. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  Google Scholar 

  42. Park SJ, Ahmad F, Philp A, et al. (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 14:421–433

    Article  Google Scholar 

  43. D’Introno A, Paradiso A, Scoditti E, et al. (2009) Antioxidant and anti-inflammatory properties of tomato fruit synthesizing different amount of stilbenes. Plant Biotech J 7:422–429

    Article  Google Scholar 

  44. Csiszar A, Smith K, Labinsky N, Orosz Z, Rivera A, et al. (2006) Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells, role of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol 291:1694–1699

    Article  Google Scholar 

  45. Terra X, Valls J, Vitrac X, et al. (2007) Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated raw 2647 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 55:4357–4365

    Article  CAS  Google Scholar 

  46. Nishiumi S, Mukai R, Ichiyanagi T, Ashida H (2012) Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace. J Agric Food Chem 60:9315–9320

    Article  CAS  Google Scholar 

  47. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  48. Georgiev V, Ananga A, Tsolova V (2014) Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 6:391–415

    Article  Google Scholar 

  49. Virgili F, Marino M (2008) Regulation of cellular signals from nutritional molecules, a specific role for phytochemicals, beyond antioxidant activity. Free Radic Biol Med 45:1205–1216

    Article  CAS  Google Scholar 

  50. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, et al. (2008) The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138:1677–1683

    CAS  Google Scholar 

  51. Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, et al. (2011) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  Google Scholar 

  52. Yao LH, Jiang YM, Shi J, Tomas-Barberàn FA, Datta N, et al. (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  Google Scholar 

  53. Martin C, Butelli E, Petroni K, Tonelli C (2011) How can research on plants contribute to promoting human health? Plant Cell 23:1685–1699

    Article  CAS  Google Scholar 

  54. Nurmi T, Mursu J, Heinonen M, Nurmi A, Hiltunen R, et al. (2009) Metabolism of berry anthocyanins to phenolic acids in humans. J Agric Food Chem 57:2274–2281

    Article  CAS  Google Scholar 

  55. Díaz-Rubio ME, Pérez-Jiménez J, Martínez-Bartolomé MA, Álvarez I, Saura-Calixto F (2015) Regular consumption of an antioxidant-rich juice improves oxidative status and causes metabolome changes in healthy adults. Plant Foods Hum Nutr 70:9–14

    Article  Google Scholar 

  56. Perez-Jimenez J, Serrano J, Tabernero M, et al. (2009) Bioavailability of phenolic antioxidants associated with dietary fiber, plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Hum Nutr 64:102–107

    Article  CAS  Google Scholar 

  57. Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, et al. (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 55:1169–1176

    Article  CAS  Google Scholar 

  58. Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36:79–87

    Article  CAS  Google Scholar 

  59. Hoshino J, Park EJ, Kondratyuk TP, et al. (2010) Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J Med Chem 53:5033–5043

    Article  CAS  Google Scholar 

  60. Hassan-Khabbar S, Cottart CH, Wendum D, Vibert F, Clot JP, et al. (2008) Post ischemic treatment by trans-resveratrol in rat liver ischemia–reperfusion, a possible strategy in liver surgery. Liver Transpl 14:451–459

    Article  Google Scholar 

  61. Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol, what formulation solutions to bioavailability limitations? J Control Release 158:182–193

    Article  CAS  Google Scholar 

  62. Gambacorta G, Antonacci D, Pati S, la Gatta M, Faccia M, et al. (2011) Influence of winemaking technologies on phenolic composition of Italian red wines. Eur Food Res Technol 233:1057–1066

    Article  CAS  Google Scholar 

  63. Atanacković M, Petrović A, Jović S, Gojković-Bukarica L, Bursać M, et al. (2012) Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem 131:513–518

    Article  Google Scholar 

  64. Gambuti A, Strollo D, Erbaggio A, Lecce L, Moio L (2007) Effect of winemaking practices on color indexes and selected bioactive phenolics of aglianico wine. J Food Sci 72:S623–S628

    Article  CAS  Google Scholar 

  65. Kostadinović S, Wilkens A, Stefova M, et al. (2012) Stilbene levels and antioxidant activity of vranec and merlot wines from Macedonia: effect of variety and enological practices. Food Chem 135:3003–3009

    Article  Google Scholar 

  66. Baiano A, Terracone C, Gambacorta G, La Notte E (2009) Phenolic content and antioxidant activity of primitivo wine: comparison among winemaking technologies. J Food Sci 74:C258–C267

    Article  CAS  Google Scholar 

  67. Mulero J, Zafrilla P, Cayuela JM, Martínez-Cachá A, Pardo F (2011) Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques. J Food Sci 76:C436–C440

    Article  CAS  Google Scholar 

  68. Francesca N, Romano R, Sannino C, Le Grottaglie L, Settanni L, et al. (2014) Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. Int J Food Microbiol 171:84–93

    Article  CAS  Google Scholar 

  69. Donsì F, Ferrari G, Fruilo M, Pataro G (2010) Pulsed electric field-assisted vinification of aglianico and piedirosso grapes. J Agric Food Chem 58:11606–11615

    Article  Google Scholar 

  70. Cholet C, Delsart C, Petrel M, Gontier E, Grimi N, et al. (2014) Structural and biochemical changes induced by pulsed electric field treatments on cabernet sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. J Agric Food Chem 62:2925–2934

    Article  CAS  Google Scholar 

  71. Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, et al. (2012) Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. Am J Enol Vitic 63:205–211

    Article  CAS  Google Scholar 

  72. Rodriguez-Nogales JM, Fernández-Fernández E, Gómez M, Vila-Crespo J (2012) Antioxidant properties of sparkling wines produced with β-glucanases and commercial yeast preparations. J Food Sci 77:C1005–C1010

  73. Puértolas E, Saldaña G, Alvarez I, Raso J (2010) Effect of pulsed electric field processing of red grapes on wine chromatic and phenolic characteristics during aging in oak barrels. J Agric Food Chem 58:2351–2357

  74. Morata A, Gomez-Cordoves C, Subervolia J, Bartolome B, Colomo B, et al. (2003) Adsorption of anthocyanins by yeast cell walls during fermentation of red wines. J Agric Food Chem 51:4084–4088

    Article  CAS  Google Scholar 

  75. Mazauric JP, Salmon JM (2005) Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. analysis of remnant polyphenolic compounds in the resulting wines. J Agric Food Chem 53:5647–5653

    Article  CAS  Google Scholar 

  76. Girard B, Yuksel D, Cliff MA, Delaquis P, Reynolds AG (2001) Vinification effects on the sensory, colour, and GC profiles of pinot noir wines from British Colombia. Food Res Int 34:483–499

    Article  CAS  Google Scholar 

  77. Mazza G, Fukumoto L, Delaquis P, Girard B, Ewert B (1999) Anthocyanins, phenolics, and color of cabernet franc, merlot, and pinot noir wines from British Colombia. J Agric Food Chem 47:4009–4017

    Article  CAS  Google Scholar 

  78. Tufariello M, Chiriatti MA, Grieco F, Perrotta C, Capone S, et al. (2014) Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of negroamaro wines. LWT - Food Sci Technol 58:35–48

    Article  CAS  Google Scholar 

  79. Brandolini V, Fiore C, Maietti A, Tedeschi P, Romano P (2007) Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photochemiluminescence. World J Microbiol Biotechnol 23:581–586

    Article  CAS  Google Scholar 

  80. Katalinić V, Možina SS, Skroza D, Generalić I, Abramovič H, et al. (2010) Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem 119:715–723

    Article  Google Scholar 

  81. Rodrigo R, Miranda A, Vergara L (2001) Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin Chim Acta 412:410–412

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Education, University and Research - Project S.I.Mi.S.A. - PON02_00186_3417512/1 and Project Pro.Ali.Fun - PON02_00186_2937475.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Giovinazzo.

Ethics declarations

Conflict of Interest

All the authors do not have any competing financial or other interests in relation to the presented work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovinazzo, G., Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum Nutr 70, 454–462 (2015). https://doi.org/10.1007/s11130-015-0518-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0518-1

Keywords

Navigation