Skip to main content
Log in

Bioavailability of Phenolic Antioxidants Associated with Dietary Fiber: Plasma Antioxidant Capacity After Acute and Long-Term Intake in Humans

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Most studies on bioavailability of phenolic antioxidants are focused in foods and beverages in which they may be easily released from the food matrix, reaching a peak in plasma antioxidant capacity 1–2 h after the intake. However, plant foods contain significant amounts of polyphenols associated with dietary fiber. The aim of the present work was to seek the bioavailability of total phenolic antioxidants associated with dietary fiber by measuring plasma antioxidant capacity in human volunteers. An acute intake of 15 g of a dietary fiber rich in associated phenolic antioxidants in healthy volunteers (n = 10) increased antioxidant capacity of plasma in relation to a control group (n = 4), becoming significant 8 h after the intake. This shows that phenolic antioxidants associated with dietary fiber are at least partially bioavailable in humans, although dietary fiber appears to delay their absorption. No significant changes were observed after long-term intake (16 weeks, 34 subjects).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azinobis-(3-etilbenzotiazolin-6-sulphonic) acid

FRAP:

ferric reducing/antioxidant power

GADF:

grape antioxidant dietary fiber

PA:

phenolic antioxidants

References

  1. Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiological studies. Am J Clin Nutr 81:317S–325S

    CAS  Google Scholar 

  2. Manach C, Wiliamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230s–242s

    CAS  Google Scholar 

  3. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81:243S–255S

    CAS  Google Scholar 

  4. Hollman PCH, Van Trijp JMP, Mengelers MJB, De Vries JHM, Katan MB (1997) Bioavailability of the dietary flavonol quercetin in men. Cancer Lett 114:139–140 doi:10.1016/S0304-3835(97)04644-2

    Article  CAS  Google Scholar 

  5. Maxwell S, Cruickshank A, Thorpe G (1994) Red wine and antioxidant activity in serum. Lancet 344:193–194 doi:10.1016/S0140-6736(94)92795-2

    Article  CAS  Google Scholar 

  6. Wirleitner B, Schröecksnadel, Winkler C, Frick B, Fuchs D (2003) In vivo determination of oxidative stress. Aktuel Ermaehr Med 28:363–370

    CAS  Google Scholar 

  7. Bompadre S, Leone L, Politi A, Battino M (2004) Improved FIA-ABTS method for antioxidant capacity determination in different biological samples. Free Radic Res 38:831–838 doi:10.1080/10715760410001715158

    Article  CAS  Google Scholar 

  8. Cao G, Russell M, Lischner N, Prior RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128:2383–2390

    CAS  Google Scholar 

  9. Serafini M, Maiani G, Ferro-Luzzi A (1998) Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 128:1003–1007

    CAS  Google Scholar 

  10. Alberti-Fidanza A, Burini G, Antonelli G, Murdolo G, Perriello G (2003) Acute effects of lyophilized red wine on total antioxidant capacity in healthy volunteers. Diabetes Nutr Metab 16:65–71

    CAS  Google Scholar 

  11. Fernández-Pachón MS, Villaño D, Troncoso AM, García-Parrilla MC (2005) Antioxidant capacity of plasma after red wine intake in human volunteers. J Agric Food Chem 53:5024–5029 doi:10.1021/jf0501995

    Article  Google Scholar 

  12. Fernández-Pachón MS, Villaño D, Troncoso AM, García-Parrilla MC (2008) Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Crit Rev Food Sci Nutr 48:649–671 doi:10.1080/10408390701761845

    Article  Google Scholar 

  13. Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9:145–152 doi:10.1179/135100004225004814

    Article  CAS  Google Scholar 

  14. Pérez-Jiménez J, Serrano J, Tabernero M, Arranz S, Díaz-Rubio ME, García-Diz L, Goñi I, Saura-Calixto F (2008) Effects of grape antioxidant dietary fiber on cardiovascular disease risk factors. Nutrition 24:646–653 doi:10.1016/j.nut.2008.03.012

    Article  Google Scholar 

  15. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power, The FRAP assay. Anal Biochem 239:70–76 doi:10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  16. Pulido R, Jiménez-Escrig A, Orensanz L, Saura-Calixto F, Jiménez-Escrig A (2005) Study of plasma antioxidant status in Alzheimer’s disease. Eur J Neurol 12:531–535 doi:10.1111/j.1468-1331.2005.01000.x

    Article  CAS  Google Scholar 

  17. Re R, Pellegrini N, Preoteggente A, Pannala A, Yang M, Rice-Evans (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:121–137 doi:10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  18. Gonthier MP, Donovan JL, Texier O, Felgines C, Remesy C, Scalbert A (2003) Metabolism of dietary procyanidins in rats. Free Radic Biol Med 35:837–844 doi:10.1016/S0891-5849(03)00394-0

    Article  CAS  Google Scholar 

  19. Chang D, Wang F, Zhao YS, Pan HZ (2008) Evaluation of oxidative stress in colorectal cancer patients. Biomed Environ Sci 21:286–289 doi:10.1016/S0895-3988(08)60043-4

    Article  CAS  Google Scholar 

  20. Castilla P, Echarri R, Davalos A, Cerrato F, Ortega H, Teruel JL, Fernandez-Lucas M, Gomez-Coronado D, Ortuno J, Lasuncion MA (2006) Concentrated red grape juice exerts antioxidant hypolipidemic and antiinflamatory effects in both hemodyalisis patients and healthy subjects. Am J Clin Nutr 84:252–262

    CAS  Google Scholar 

  21. Bub A, Watzl B, Rechkemmer G, Briviba K (2001) Malvidin-3-gluocside bioavailability in humans after ingestion of red wine, dealcoholized red wine and grape juice. Eur J Nutr 40:113–120 doi:10.1007/s003940170011

    Article  CAS  Google Scholar 

  22. Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange, Rémésy C (2003) Bioavailability in humans of the flavanones hesperidin and nairutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 57:235–242 doi:10.1038/sj.ejcn.1601547

    Article  CAS  Google Scholar 

  23. Larraruri JA, Rupérez P, Saura-Calixto F (1997) Pineapple shell as a source of dietary fiber with associated polyphenols. J Agric Food Chem 45:4028–4031 doi:10.1021/jf970450j

    Article  Google Scholar 

  24. Lecumberri E, Mateos R, Izquierdo-Pulido M, Rupérez P, Goya L, Bravo L (2007) Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chem 104:948–954 doi:10.1016/j.foodchem.2006.12.054

    Article  CAS  Google Scholar 

  25. Donovan JL, Bell JR, Kasim-Karakas S, German JB, Waterhouse A (1999) Catechin is present as metabolites in human plasma after consumption of red wine. J Nutr 129:1662–1668

    CAS  Google Scholar 

  26. Cartron E, Fouret G, Carbonneau MA, Lauret C, Michel F, Monier L, Descomps B, Leger CL (2003) Red-wine beneficial long-term effects on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine-description of two O-methylated derivatives of gallic acid in humans. Free Radic Res 37:1021–1035 doi:10.1080/10715760310001598097

    Article  CAS  Google Scholar 

  27. Bell JL, Donovan JL, Wong R, Waterhouse AL, German JB, Walzem RL, Kasim-Karakas SE (2007) (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr 71:103–108

    Google Scholar 

  28. Brighenti F, Valtueña S, Pellegrini N, Ardigó D, Del Río D, Salvatore S, Piatti P, Serafini M, Zavaroni I (2005) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93:619–625 doi:10.1079/BJN20051400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Instituto de Análisis Clínicos of the Universidad Complutense de Madrid for the help in the blood extractions. The authors thank the volunteers for their cooperation along the study. The technical assistance of Mrs. Ma. Rosa Redondo is acknowledged. The present research was performed under the financial support of the Spanish Ministry of Education and Science (project AGL 2004-07579-C04-01/ALI). S. Arranz had an FPI scholarship from the Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jara Pérez-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Jiménez, J., Serrano, J., Tabernero, M. et al. Bioavailability of Phenolic Antioxidants Associated with Dietary Fiber: Plasma Antioxidant Capacity After Acute and Long-Term Intake in Humans. Plant Foods Hum Nutr 64, 102–107 (2009). https://doi.org/10.1007/s11130-009-0110-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-009-0110-7

Keywords

Navigation