Skip to main content
Log in

Contribution of Macromolecular Antioxidants to Dietary Antioxidant Capacity: A Study in the Spanish Mediterranean Diet

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Epidemiological and clinical studies show that diets with a high antioxidant capacity, such us those rich in plant food and beverages, are associated with significant decreases in the overall risk of cardiovascular disease or colorectal cancer. Current studies on dietary antioxidants and dietary antioxidant capacity focus exclusively on low molecular weight or soluble antioxidants (vitamins C and E, phenolic compounds and carotenoids), ignoring macromolecular antioxidants. These are polymeric phenolic compounds or polyphenols and carotenoids linked to plant food macromolecules that yield bioavailable metabolites by the action of the microbiota with significant effects either local and/or systemic after absorption. This study determined the antioxidant capacity of the Spanish Mediterranean diet including for the first time both soluble and macromolecular antioxidants. Antioxidant capacity and consumption data of the 54 most consumed plant foods and beverages were used. Results showed that macromolecular antioxidants are the major dietary antioxidants, contributing a 61 % to the diet antioxidant capacity (8000 μmol Trolox, determined by ABTS method). The antioxidant capacity data for foods and beverages provided here may be used to estimate the dietary antioxidant capacity in different populations, where similar contributions of macromolecular antioxidants may be expected, and also to design antioxidant-rich diets. Including macromolecular antioxidants in mechanistic, intervention and observational studies on dietary antioxidants may contribute to a better understanding of the role of antioxidants in nutrition and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Møller P, Loft S (2006) Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic Biol Med 41:388–415

    Article  Google Scholar 

  2. Oyagbemi AA, Azeez OI, Saba AB (2009) Interactions between reactive oxygen species and cancer: the roles of natural dietary antioxidants and their molecular mechanisms of action. Asian Pac J Cancer Prev 10:535–544

    Google Scholar 

  3. Noguchi N (2002) Novel insights into the molecular mechanisms of the antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging. Free Radic Biol Med 33:1480–1489

    Article  CAS  Google Scholar 

  4. Brighenti F, Valtueña S, Pellegrini N, Ardigò D, Del Rio D, Salvatore S, et al. (2005) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93:619–625

    Article  CAS  Google Scholar 

  5. Del Rio D, Agnoli C, Pellegrini N, Krogh V, Brighenti F, Mazzeo T, et al. (2011) Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J Nutr 141:118–123

    Article  Google Scholar 

  6. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. (2013) Primary prevention of cardiovascular disease with a mediterranean diet. New Eng J Med 368:1279–1290

    Article  CAS  Google Scholar 

  7. La Vecchia C, Decarli A, Serafini M, Parpinel M, Bellocco R, Galeone C, et al. (2013) Dietary total antioxidant capacity and colorectal cancer: a large case-control study in Italy. Intl J Cancer 133:1447–1451

    Article  CAS  Google Scholar 

  8. Saura-Calixto F (2012) Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60:11195–11200

    Article  CAS  Google Scholar 

  9. Arranz S, Saura-Calixto F, Shaha S, Kroon PA (2009) High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agric Food Chem 57:7298–7303

    Article  CAS  Google Scholar 

  10. Goñi I, Serrano J, Saura-Calixto F (2006) Bioaccessibility of β-carotene, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 54:5382–5387

    Article  Google Scholar 

  11. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187

    Article  CAS  Google Scholar 

  12. Pérez-Jiménez J, Saura Calixto F (2015) Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: intake in four european countries. Food Res Int 74:315–323

    Article  Google Scholar 

  13. Sánchez-Tena S, Lizárraga D, Miranda A, Vinardell MP, García-García F, Dopazo J, et al. (2013) Grape antioxidant dietary fiber inhibits intestinal polyposis in ApcMin/+ mice: relation to cell cycle and immune response. Carcinogenesis 34:1881–1888

    Article  Google Scholar 

  14. Pérez-Jiménez J, Serrano J, Tabernero M, Arranz S, Díaz-Rubio ME, García-Diz L, et al. (2008) Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutr 24:646–653

    Article  Google Scholar 

  15. Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F (2013) Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev 26:118–129

    Article  Google Scholar 

  16. Lizarraga D, Vinardell MP, Noé V, van Delft JH, Alcarraz-Vizán G, van Breda SG, et al. (2011) A lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber induces genetic and metabolic alterations in colon mucosa of female C57Bl/6 J mice. J Nutr 141:1597–1604

    Article  CAS  Google Scholar 

  17. Ministry of Agriculture, Food and Environment La alimentación mes a mes. Diciembre (2013) Publishing Office, Spanish Ministry of Agriculture, Food and Environment: Madrid

  18. Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE (2002) Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J Agric Food Chem 50:1785–1790

    Article  CAS  Google Scholar 

  19. Pérez-Jiménez J, Arranz S, Saura-Calixto F (2009) Proanthocyanidin content in foods is largely underestimated in the literature data: an approach to quantification of the missing proanthocyanidins. Food Res Int 42:1381–1388

    Article  Google Scholar 

  20. Arranz S, Pérez-Jiménez J, Saura-Calixto F (2008) Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter. Eur Food Res Technol 227:425–431

  21. Saura-Calixto F, Díaz-Rubio ME (2007) Polyphenols associated with dietary fibre in wine. A wine polyphenols gap? Food Res Int 40:613–619

    Article  CAS  Google Scholar 

  22. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, et al. (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819

  23. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  CAS  Google Scholar 

  24. Kolomvotsou AI, Rallidis LS, Mountzouris KC, Lekakis J, Koutelidakis A, Efstathiou S, et al. (2013) Adherence to mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur J Nutr 52:37–48

    Article  CAS  Google Scholar 

  25. Serrano J, Goñi I, Saura-Calixto F (2007) Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Res Int 40:15–21

    Article  CAS  Google Scholar 

  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  27. Pérez-Jiménez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Am J Clin Nutr 64:S112–S120

    Article  Google Scholar 

  28. Ministry of Agriculture, Food and Environment La alimentación en España (2006) Publishing Office, Spanish Ministry of Agriculture, Food and Environment : Madrid

  29. Saura-Calixto F, Goñi I (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94:442–447

  30. Tabernero M, Serrano J, Saura-Calixto F (2006) The antioxidant capacity of cocoa products: contribution to the spanish diet. Int J Food Sci Technol 41:28–32

    Article  CAS  Google Scholar 

  31. Saura-Calixto F, Goni I (2009) Definition of the Mediterranean diet based on bioactive compounds. Crit Rev Food Sci Nutr 49:145–152

  32. National Statistics Institute (INE) (1965) Encuesta de Presupuestos Familiares (marzo 1964-marzo 1965). Resultados provisionales, nacionales y provinciales. Publishing Office, Spanish National Institute of Statistics, Madrid

  33. Pérez-Jiménez J, Serrano J, Tabernero M, Arranz S, Díaz-Rubio ME, García-Diz L, et al. (2009) Bioavailability of phenolic antioxidants associated with dietary fiber: plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Hum Nutr 64:102–107

    Article  Google Scholar 

  34. Arranz S, Silván JM, Saura-Calixto F (2010) Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Molec Nutr Food Res 54:1646–1658

Download references

Acknowledgments

We thank M.L. García-González for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulgencio Saura-Calixto.

Ethics declarations

Funding

This research was supported by the Spanish Ministry of Economy and Competitiveness (AGL2011-27,741). M.E. D-R. and J. P-J. acknowledge the CSIC and the MINNECO for JAE-Doc and Juan de la Cierva postdoctoral contracts, respectively.

Conflict of Interests

The authors declare no conflict of interests.

Human and Animal Studies

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Table S1

(DOC 66 kb)

Table S2

(DOC 29.5 kb)

Table S3

(DOC 88 kb)

Table S4

(DOC 47.5 kb)

Table S5

(DOC 39 kb)

Table S6

(DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Jiménez, J., Elena Díaz-Rubio, M. & Saura-Calixto, F. Contribution of Macromolecular Antioxidants to Dietary Antioxidant Capacity: A Study in the Spanish Mediterranean Diet. Plant Foods Hum Nutr 70, 365–370 (2015). https://doi.org/10.1007/s11130-015-0513-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0513-6

Keywords

Navigation