Skip to main content
Log in

Tempe Consumption Modulates Fecal Secondary Bile Acids, Mucins, Immunoglobulin A, Enzyme Activities, and Cecal Microflora and Organic Acids in Rats

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The present study investigated the effect of dietary tempe, a fermented soy product, on the colonic environment of rats fed high-fat (HF, 30 % fat; experiment 1) or low-fat (LF, 6 % fat; experiment 2) diets. Growing male rats were fed the experimental diets with or without 25 % tempe for 21 days. Tempe consumption slightly but significantly increased the growth of rats fed both the HF and LF diets (P < 0.05). With both the HF and LF diets, dietary tempe markedly reduced a harmful fecal secondary bile acid, lithocholic acid (a risk factor of colon cancer) (P < 0.05), and markedly elevated fecal mucins (indices of intestinal barrier function) and immunoglobulin A (IgA, an index of intestinal immune function) (P < 0.05). With the HF diet, dietary tempe increased cecal acetate, butyrate, propionate, and succinate concentrations (P < 0.05). Analysis of the profile of cecal microflora revealed lower Bacteroides and higher Clostridium cluster XIVa levels in the tempe group of rats fed the HF diet (P < 0.05). Compared with the control group, the fecal activity of β-glucosidase was markedly higher in the tempe group (P < 0.05), while that of urease was lower (P < 0.05) with both the HF and LF diets. The present results suggest that tempe consumption modulates the colonic environment in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GPR91:

G-protein-coupled receptor 91

HF:

High fat

IBD:

Inflammatory bowel disease

IgA:

Immunoglobulin A

LF:

Low fat

References

  1. Toyomura K, Kono S (2002) Soybeans, soy foods, isoflavones and risk of colorectal cancer: a review of experimental and epidemiological data. Asian Pac J Cancer Prev 3:125–132

    Google Scholar 

  2. Matsushita H, Kobayashi M, Tsukiyama R, Fujimoto M, Suzuki M, Tsuji K, Yamamoto K (2008) Stimulatory effect of Shoyu polysaccharides from soy sauce on the intestinal immune system. Int J Mol Med 22:243–247

    CAS  Google Scholar 

  3. Nout MJR, Kiers JL (2005) Tempe fermentation, innovation and functionality: update into the third millennium. J Appl Microbiol 98:789–805

    Article  CAS  Google Scholar 

  4. Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589:47–65

    Article  CAS  Google Scholar 

  5. Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99

    Article  CAS  Google Scholar 

  6. Perdigón G, Moreno de LeBlanc A, Valdez J, Rachid M (2002) Role of yoghurt in the prevention of colon cancer. Eur J Clin Nutr 56:S65–S68

    Article  Google Scholar 

  7. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D (2011) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 128:847–856

    Article  CAS  Google Scholar 

  8. Goldin BR (1986) In situ bacterial metabolism and colon mutagens. Annu Rev Microbiol 40:367–393

    Article  CAS  Google Scholar 

  9. Wu WT, Chen HL (2011) Effects of konjac glucomannan on putative risk factors for colon carcinogenesis in rats fed a high-fat diet. J Agric Food Chem 59:989–994

    Article  CAS  Google Scholar 

  10. Gordon DT, Okuma K (2002) Determination of total dietary fiber in selected foods containing resistant maltodextrin by enzymatic-gravimetric method and liquid chromatography: collaborative study. J AOAC Int 85:435–444

    CAS  Google Scholar 

  11. Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2000) A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J Nutr 130:1670–1674

    CAS  Google Scholar 

  12. Bovee-Oudenhoven IM, Termont DS, Heidt PJ, van der Meer R (1997) Increasing the intestinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 40:497–504

    CAS  Google Scholar 

  13. Crowther RS, Wetmore RF (1987) Fluorometric assay of O-linked glycoproteins by reaction with 2-cyanoacetamide. Anal Biochem 163:170–174

    Article  CAS  Google Scholar 

  14. Okazaki Y, Tomotake H, Tsujimoto K, Sasaki M, Kato N (2011) Consumption of a resistant protein, sericin, elevates fecal immunoglobulin A, mucins, and cecal organic acids in rats fed a high-fat diet. J Nutr 141:1975–1981

    Article  Google Scholar 

  15. Lee DK, Jang S, Baek EH, Kim MJ, Lee KS, Shin HS, Chung MJ, Kim JE, Lee KO, Ha NJ (2009) Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis 8:21–28

    Article  Google Scholar 

  16. Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N (2003) Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr 133:1238–1243

    CAS  Google Scholar 

  17. Hill MJ (1991) The ratio of lithocholic to deoxycholic acid in faeces: a risk factor in colorectal carcinogenesis. Eur J Cancer Prev 1:75–78

    Article  Google Scholar 

  18. Maki KC, Butteiger DN, Rains TM, Lawless A, Reeves MS, Schasteen C, Krul ES (2010) Effects of soy protein on lipoprotein lipids and fecal bile acid excretion in men and women with moderate hypercholesterolemia. J Clin Lipidol 4:531–542

    Article  Google Scholar 

  19. Sung HY, Choi YS (2008) Fructooligosaccharide and soy isoflavone suppress colonic aberrant crypt foci and cyclooxygenase-2 expression in dimethylhydrazine-treated rats. J Med Food 11:78–85

    Article  CAS  Google Scholar 

  20. Liyanage R, Han KH, Watanabe S, Shimada K, Sekikawa M, Ohba K, Tokuji Y, Ohnishi M, Shibayama S, Nakamori T, Fukushima M (2008) Potato and soy peptide diets modulate lipid metabolism in rats. Biosci Biotechnol Biochem 72:943–950

    Article  CAS  Google Scholar 

  21. Bell EW, Emken EA, Klevay LM, Sandstead HH (1981) Effects of dietary fiber from wheat, corn, and soy hull bran on excretion of fecal bile acids in humans. Am J Clin Nutr 34:1071–1076

    CAS  Google Scholar 

  22. Goulding NJ, Gibney MJ, Gallagher PJ, Morgan JB, Jones DB, Taylor TG (1983) The immunological consequences of high intake of soya-bean protein in man. Plant Foods Hum Nutr 32:19–27

    Article  Google Scholar 

  23. Montagne L, Toullec R, Formal M, Lalles JP (2000) Influence of dietary protein level and origin on the flow of mucin along the small intestine of the preruminant calf. J Dairy Sci 83:2820–2828

    Article  CAS  Google Scholar 

  24. Dréau D, Lallès JP, Salmon H, Toullec R (1995) IgM, IgA, IgGl and IgG2 specific responses in blood and gut secretion of calves fed soyabean products. Vet Immunol Immunopathol 47:57–67

    Article  Google Scholar 

  25. Lundin E, Zhang JX, Huang CB, Reuterving CO, Hallmans G, Nygren C, Stenling R (1993) Oat bran, rye bran, and soybean hull increase goblet cell volume density in the small intestine of the golden hamster. Scand J Gastroenterol 28:15–22

    Article  CAS  Google Scholar 

  26. De Reu JC, Ten Wolde RM, De Groot J, Nout MJR, Rombouts FM, Gruppen H (1995) Protein hydrolysis during soybean tempe fermentation with Rhizopus oligosporus. J Agric Food Chem 43:2235–2239

    Article  Google Scholar 

  27. Wong JMW, De Souza R, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic health: fermentation and short shain fatty acids. J Clin Gastroenterol 40:235–243

    Article  CAS  Google Scholar 

  28. Toden S, Bird AR, Topping DL, Conlon MA (2007) Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. Br J Nutr 97:535–543

    Article  CAS  Google Scholar 

  29. Levrat MA, Behr SR, Remesy C, Demigne C (1991) Effects of soybean fiber on cecal digestion in rats previously adapted to a fiber-free diet. J Nutr 121:672–678

    CAS  Google Scholar 

  30. Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  CAS  Google Scholar 

  31. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, Dunne WM, Allen PM, Stappenbeck TS (2011) Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 9:390–403

    Article  CAS  Google Scholar 

  32. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  Google Scholar 

  33. Wiseman H, Casey K, Bowey EA, Duffy R, Davies M, Rowland IR, Lloyd AS, Murray A, Thompson R, Clarke DB (2004) Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults. Am J Clin Nutr 80:692–699

    CAS  Google Scholar 

  34. Klus K, Barz W (1995) Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daizein and glycitein by bacteria isolated from tempeh. Arch Microbiol 164:428–434

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukako Okazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utama, Z., Okazaki, Y., Tomotake, H. et al. Tempe Consumption Modulates Fecal Secondary Bile Acids, Mucins, Immunoglobulin A, Enzyme Activities, and Cecal Microflora and Organic Acids in Rats. Plant Foods Hum Nutr 68, 177–183 (2013). https://doi.org/10.1007/s11130-013-0357-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0357-x

Keywords

Navigation