Skip to main content
Log in

Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Five tempe-derived bacterial strains identified asMicrococcus orArthrobacter species were shown to transform the soybean isoflavones daidzein and glycitein to polyhydroxylated isoflavones by different hydroxylation reactions. All strains converted glycitein and daidzein to 6,7,4′-trihydroxyisoflavone (factor 2) and the latter substrate also to 7,8,4′-trihydroxyisoflavone. Three strains transformed daidzein to 7,8,3′,4′-tetrahydroxyisoflavone and 6,7,3′,4′-tetrahydroxyisoflavone. In addition, two strains formed 6,7,8,4′-tetrahydroxyisoflavone from daidzein. Conversion of glycitein by these two strains led to the formation of factor 2 and 6,7,3′,4′-tetrahydroxyisoflavone. The structures of these transformation products were elucidated by spectroscopic techniques and chemical degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlercreutz H, Mousavi Y, Loukovaara M, Hämäläinen E (1991) Lignans, isoflavones, sex hormone metabolism and breast cancer. In: Hochberg RB, Naftolin F (eds) The new biology of steroid hormones. Raven Press, New York, pp 145–154

    Google Scholar 

  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine specific protein kinases. J Biol Chem 262: 5592–5595

    PubMed  CAS  Google Scholar 

  • Barz W, Weltring KM (1985) Biodegradation of aromatic extractives of wood. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, New York London, pp 607–666

    Google Scholar 

  • Baumann U (1992) Gehalt und Muster von Aminosäuren während der Fermentation von Tempe durch drei Arten der GattungRhizopus. PhD thesis, University of Münster

  • Böger-Papendorf G (1992) Transformation von Isoflavonen durch Tempe bildende Mikroorganismen, PhD thesis, University of Münster

  • Campbell RVM, Harper SH, Kemp AD (1969) Isoflavonoid constitutents of the heartwood ofCordyla africana. J Chem Soc (C): 1787–1795

  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oricogenes and signal transduction. Cell 64: 281–302

    Article  PubMed  CAS  Google Scholar 

  • Chimura H, Sawa T, Kumada Y, Naganawa H, Matsuzaki M, Takita T, Hamada M, Takeuchi T, Umezawa H (1975) New isoflavones, inhibiting catechol-O-methyltransferase, produced byStreptomyces. J Antibiot 28: 619–626

    PubMed  CAS  Google Scholar 

  • Coward L, Barnes NC, Setchell KDR, Barnes S (1993) Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem 41: 1961–1967

    Article  CAS  Google Scholar 

  • Ebata J, Fukuda Y, Hirai K, Murata K (1972) β-Glucosidase involved in the antioxidant formation in tempeh, fermented soybeans. J Agric Chem Soc Jpn 46: 323–329

    CAS  Google Scholar 

  • Funayama S, Anraku Y, Mita A, Komiyama K, Omura S (1989) Structural study of isoflavonoids possessing antioxidant activity isolated from fermentation broth ofStreptomyces sp. J Antibiot 42: 1350–1355

    PubMed  CAS  Google Scholar 

  • György P, Murata K, Ikehata H (1964) Antioxidants isolated from fermented soybeans (tempeh). Nature 203: 870–872

    Article  Google Scholar 

  • Harper SH, Shirley DB, Taylor DA (1976) Isoflavones fromXan-thocercis zambesiaca. Phytochemistry 15: 1019–1023

    Article  CAS  Google Scholar 

  • Hirano T, Oka K, Akiba M (1989) Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of human breast carcinoma cell line, ZR-75-1. Res Comm Chem Path Pharm 64: 69–78

    CAS  Google Scholar 

  • Jha HC, Bockemühl S, Egge H (1990) Adriamycin-induced mitochondrial lipid peroxidation and its inhibition by tempe-isoflavonoids and their derivatives. In: Hermana, Mien M, Karyadi D (eds) Second Asian symposium on non-salted soybean fermentation. Ministry of Health, Jakarta, pp 4–14

    Google Scholar 

  • Keuth S, Bisping B (1994) Vitamin B12 production byCitrobacter freundii orKlebsiella pneumoniae during tempeh fermentation and proof of enterotoxin absence by PCR. Appl Environ Microbiol 60: 1495–1499

    PubMed  CAS  Google Scholar 

  • Klus K, Börger-Papendorf G, Barz W (1993) Formation of 6,7,4′-trihydroxyisoflavone (factor 2) from soybean seed isoflavones by bacteria isolated from tempe. Phytochemistry 34: 979–981

    Article  CAS  Google Scholar 

  • Komiyama K, Funayama S, Anraku Y, Mita A, Takahashi Y, Omura S, Shimasaki H (1989) Isolation of isoflavonoids possessing antioxidant activity from the fermentation broth ofStreptomyces sp. J Antibiot 42: 1344–1349

    PubMed  CAS  Google Scholar 

  • Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merril), Agric Biol Chem 55: 2227–2233

    CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Makishima M, Honma Y, Hozumi M, Sampi K, Hattori M, Umezawa K, Motoyoshi K (1991) Effects of inhibitors of protein tyrosine kinase activity and/or phosphatidylinositol turnover on differentiation of some human myelomonocytic leukemia cells. Leukemia Res 15: 701–708

    Article  CAS  Google Scholar 

  • Middleton E Jr, Kandaswami C (1992) Commentary. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43: 1167–1179

    Article  PubMed  CAS  Google Scholar 

  • Murata K (1988) Antioxidative stability of tempeh. J Am Oil Chem Soc 65: 799–800

    CAS  Google Scholar 

  • Naim M, Gestetner B, Zilkah S, Birk Y, Bondi A (1974) Soybean isoflavones, characterization, and antifungal activity. J Agric Food Chem 22: 806–810

    Article  PubMed  CAS  Google Scholar 

  • Ollis WD, Rhodes CA, Sutherland IO (1967) The extractives ofMillettia dura (dunn) the constitutions of durlettone, durmillone, milldurone, millettone and milletosin. Tetrahedron 23: 4741–4760

    Article  CAS  Google Scholar 

  • Peterson G, Barnes S (1991) Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179: 661–667

    Article  PubMed  CAS  Google Scholar 

  • Van Etten HD, Matthews DE, Matthews PS (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27: 143–164

    Article  Google Scholar 

  • Voß C, Sepulveda-Boza S, Zilliken FW (1992) New isoflavonoids as inhibitors of porcine 5-lipoxigenase. Biochem Pharmacol 32: 157–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfang Barz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klus, K., Barz, W. Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol. 164, 428–434 (1995). https://doi.org/10.1007/BF02529741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529741

Key words

Navigation