Skip to main content
Log in

Meta-analyses using information reweighting: An application to online advertising

  • Published:
Quantitative Marketing and Economics Aims and scope Submit manuscript

Abstract

Because technology-enabled marketing research has led to information arriving at a rapid pace, methods in marketing that allow for coherent, sequential and fast information integration are needed. We propose in this research a new approach to information integration: Information Reweighted Priors (IRPs). It is a sample reweighting approach which utilizes the output from a Bayesian model fit using Markov Chain Monte Carlo, with no restrictions on the likelihood, prior distributions, or data structure; hence a general purpose tool. We demonstrate the approach with simulated datasets and an online advertising dataset with external information obtained from i) previous advertising studies in the industry from a major online advertising portal, ii) past academic studies of online adverting and iii) out-of-sample summaries of the dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For example, the external information might be about an aggregate quantity (market share within a population) but interest might be about individual-level predictions.

  2. The results are robust to the exact number of days, but discussions with Organic Inc. determined the time window.

  3. In industry there is generally some indicator of customer's interest and/or intent of purchase. The exact probability may not be readily available, but we use this case as an example to demonstrate how IRP can incorporate information of various shapes.

  4. For the sake of computation ease, if the estimated \({p^{e}_{i}}\) is 0 or 1, it is jittered with a small number (1/10th of the smallest \({p^{e}_{i}}\) or \(1-{p^{e}_{i}}\) where \({p^{e}_{i}}\neq 0~ or~ 1\)), and hence the posterior samples would not receive 0 weight in the reweighting stage. A sensitivity study about the jittering value was conducted, where the jittering value was ranged from 1/100th of the smallest \({p^{e}_{i}}\) or \(1-{p^{e}_{i}}\) where \({p^{e}_{i}}\neq 0~ or~ 1\) to 1/5, and the inference results were not observably affected.

References

  • Ali, M.H., Gerea, C., Raman, B.S., Sezgin, B., Tarnavski, T., Verona, T., Wang, P., Zabback, P., Ananthanarayan, A., Kirilov, A., et al. (2009). Microsoft cep server and online behavioral targeting. Proceedings of the VLDB Endowment, 2(2), 1558–1561.

    Article  Google Scholar 

  • Allenby, G., & Rossi, P. (1991). Quality perceptions and asymmetric switching between brands. Marketing Science, 10, 185–204.

    Article  Google Scholar 

  • Allenby, G.M., Arora, N., Ginter, J.L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, 152–162.

  • Allenby, G.M., & Rossi, P.E. (1993). A marginal-predictive approach to identifying household parameters. Marketing Letters, 4(3), 227–239.

    Article  Google Scholar 

  • Arjas, E., & Gasbarra, D. (1996). Bayesian inference of survival probabilities, under stochastic ordering constraints. Journal of the American Statistical Association, 1101–1109.

  • Boatwright, P., McCulloch, R., Rossi, P. (1999). Account-level modeling for trade promotion: An application of a constrained parameter hierarchical model. Journal of the American Statistical Association, 94(448), 1063–1073.

    Article  Google Scholar 

  • Bradlow, E., & Zaslavsky, A. (1997). Case influence analysis in bayesian inference. Journal of Computational and Graphical Statistics, 6, 314–331.

    Google Scholar 

  • Braun, M., & Moe, W. (2011). Online advertising campaigns: Modeling the effects of multiple ad creatives.

  • Briggs, R. (1999). Abolish clickthrough now!. Digitrends Fall, 1999.

  • Buckley, P. (1988). Nested multinomial logit analysis of scanner data for a hierarchical choice model. Journal of Business Research, 17, 133–154.

    Article  Google Scholar 

  • Chen, M., & Ibrahim, J. (2006). The relationship between the power prior and hierarchical models. Bayesian Analysis, 1(3), 551–574.

    MathSciNet  Google Scholar 

  • Coolen, F. (1996). On bayesian reliability analysis with informative priors and censoring. Reliability Engineering & System Safety, 53(1), 91–98.

    Article  Google Scholar 

  • DeSarbo, W., Ebbes, P., Fong, D., Snow, C. (2010). Revisiting customer value analysis in a heterogeneous market. Journal of Modelling in Management, 5(1), 8–24.

    Article  Google Scholar 

  • Dow, J., & Endersby, J. (2004). Multinomial probit and multinomial logit: a comparison of choice models for voting research. Electoral Studies, 23(1), 107–122.

    Article  Google Scholar 

  • Dreze, X., & Hussherr, F. (2003). Internet advertising: is anybody watchingJournal of interactive marketing, 17(4), 8–23.

    Article  Google Scholar 

  • Dubas, J., Lee, B., Mark, N. (2010). A multinomial logit approach to exchange rate policy classification with an application to growth. Journal of International Money and Finance, 29(7), 1438–1462.

    Article  Google Scholar 

  • Gelfand, A., & Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American statistical association, 85(410), 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian analysis, 1(3), 515–533.

    MathSciNet  Google Scholar 

  • Gelman, A., Jakulin, A., Pittau, M., Su, Y. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4), 1360–1383.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13(2), 163–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457–472.

    Article  Google Scholar 

  • Guiver, J., & Snelson, E. (2009). Bayesian inference for plackett-luce ranking models. In proceedings of the 26th annual international conference on machine learning, pp. 377–384. ACM.

  • Hahn, E.D. (2006). Re-examining informative prior elicitation through the lens of markov chain monte carlo methods. Journal of the royal statistical society: Series A (Statistics in Society), 169(1), 37–48.

    Article  MathSciNet  Google Scholar 

  • Higgins, J., & Whitehead, A. (1996). Borrowing strength from external trials in a meta-analysis. Statistics in Medicine, 15(24), 2733–2749.

    Article  CAS  PubMed  Google Scholar 

  • Hofstede, F., Kim, Y., Wedel, M. (2002). Bayesian prediction in hybrid conjoint analysis. Journal of Marketing Research, 39(2), 253–261.

    Article  Google Scholar 

  • Horsky, D., Misra, S., Nelson, P. (2006). Observed and unobserved preference heterogeneity in brand-choice models. Marketing Science, 25(4), 322–335.

    Article  Google Scholar 

  • Ibrahim, J., & Chen, M. (1998). Prior distributions and bayesian computation for proportional hazards models. Sankhyā: The Indian Journal of Statistics Series B, 60(1), 48–64.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim, J., & Chen, M. (2000). Power prior distributions for regression models. Statistical Science, 15(1), 46–60.

    Article  MathSciNet  Google Scholar 

  • Jaynes, E (1985). Highly informative priors.

  • Kadane, J.B., Dickey, J.M., Winkler, R.L., Smith, W.S., Peters, S.C. (1980). Interactive elicitation of opinion for a normal linear model. Journal of the American Statistical Association, 75(372), 845–854.

    Article  MathSciNet  Google Scholar 

  • Kullback, S., & Leibler, R.A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Lenk, P., DeSarbo, W., Green, P., Young, M. (1996). Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–191.

    Article  Google Scholar 

  • Lenk, P., & Orme, B. (2009). The value of informative priors in bayesian inference with sparse data. Journal of Marketing Research, 46(6), 832–845.

    Article  Google Scholar 

  • Lenk, P., & Rao, A. (1990). New models from old: forecasting product adoption by hierarchical bayes procedures. Marketing Science, 9, 42–53.

    Article  Google Scholar 

  • Lind, S., & Kivisto-Rahnasto, J. (2008). Utilization of external accident information in companies’ safety promotion-case: Finnish metal and transportation industry. Safety Science, 46(5), 802–814.

    Article  Google Scholar 

  • Little, R., & Rubin, D. (1983). On jointly estimating parameters and missing data by maximizing the complete-data likelihood. The American Statistician, 37(3), 218–220.

    Google Scholar 

  • Lybbert, T., Barrett, C., McPeak, J., Luseno, W. (2007). Bayesian herders: Updating of rainfall beliefs in response to external forecasts. World Development, 35(3), 480–497.

    Article  Google Scholar 

  • MacEachern, S., & Peruggia, M. (2000). Subsampling the gibbs sampler: Variance reduction. Statistics & probability letters, 47(1), 91–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Manchanda, P., Dubé, J., Goh, K., Chintagunta, P. (2006). The effect of banner advertising on internet purchasing. Journal of Marketing Research, 43(1), 98–108.

    Article  Google Scholar 

  • Marshall, P., & Bradlow, E.T. (2002). A unified approach to conjoint analysis models. Journal of the American Statistical Association, 97(459), 674–682.

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. Journal of Computational and Graphical Statistics, 11(3), 552–586.

    Article  MathSciNet  Google Scholar 

  • Moe, W., & Fader, P. (2004). Dynamic conversion behavior at e-commerce sites. Management Science, 50(3), 326–335.

    Article  Google Scholar 

  • Montgomery, A., & Rossi, P. (1999). Estimating price elasticities with theory-based priors. Journal of Marketing Research, 36, 413–423.

    Article  Google Scholar 

  • Musalem, A., Bradlow, E., Raju, J. (2008). Who’s got the coupon? estimating consumer preferences and coupon usage from aggregate information. Journal of Marketing Research, 45(6), 715–730.

    Article  Google Scholar 

  • Musalem, A., Bradlow, E., Raju, J. (2009). Bayesian estimation of random-coefficients choice models using aggregate data. Journal of Applied Econometrics, 24(3), 490–516.

    Article  MathSciNet  Google Scholar 

  • Narlikar, L., Gordân, R., Ohler, U., Hartemink, A. J. (2006). Informative priors based on transcription factor structural class improve de novo motif discovery. Bioinformatics, 22(14), e384—e392.

    Article  PubMed  Google Scholar 

  • O’Donnell, C., & Coelli, T. (2005). A bayesian approach to imposing curvature on distance functions. Journal of Econometrics, 126(2), 493–523.

    Article  MathSciNet  Google Scholar 

  • Owen, A., & Zhou, Y. (2000). Safe and effective importance sampling. Journal of the American Statistical Association, 95, 135–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Peruggia, M. (1997). On the variability of case-deletion importance sampling weights in the bayesian linear model. Journal of the American Statistical Association, 92, 199–207.

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

  • Raina, R., Ng, A. Y., Koller, D. (2006). Constructing informative priors using transfer learning. In Proceedings of the 23rd international conference on Machine learning (pp. 713–720). ACM.

  • Robert, C., & Casella, G. (2004). Monte Carlo statistical methods. Springer Verlag.

  • Rossi, P., & Allenby, G. (1993). A bayesian approach to estimating household parameters. Journal of Marketing Research, 171–182.

  • Rossi, P., Allenby, G., McCulloch, R. (2005). Bayesian statistics and marketing. New York: Wiley.

    Book  MATH  Google Scholar 

  • Rossi, P.E., Allenby, G.M., McCulloch, R.E. (2005). Bayesian statistics and marketing: Wiley.

  • Rubin, D. et al. (1988). Using the sir algorithm to simulate posterior distributions. Bayesian Statistics, 3, 395–402.

    Google Scholar 

  • Sandor, Z., & Wedel, M. (2001). Designing conjoint choice experiments using managers’ prior beliefs. Journal of Marketing Research, 28, 430–444.

    Article  Google Scholar 

  • Sharp, B., & Sharp, A. (1997). Loyalty programs and their impact on repeat-purchase loyalty patterns. International Journal of Research in Marketing, 14(5), 473–486.

    Article  Google Scholar 

  • Sheiner, L., & Beal, S. (1981). Some suggestions for measuring predictive performance. Journal of Pharmacokinetics and Pharmacodynamics, 9(4), 503–512.

    Article  CAS  Google Scholar 

  • Shim, S., & Mahoney, M. (1992). The elderly mail-order catalog user of fashion products:: A profile of the heavy purchaser. Journal of Direct Marketing, 6(1), 49–58.

    Article  Google Scholar 

  • Smith, A., & Gelfand, A. (1992). Bayesian statistics without tears: a sampling-resampling perspective. American statistician, 46(2), 84–88.

    MathSciNet  Google Scholar 

  • Song, Y. (2001). Proof that online advertising works. Digital Marketing Insights, 2001.

  • Sonnier, G., Ainslie, A., Otter, T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3), 313–331.

    Article  Google Scholar 

  • Srinivasan, V., Jain, A.K., Malhotra, N.K. (1983). Improving predictive power of conjoint analysis by constrained parameter estimation. Journal of Marketing Research, 433–438.

  • Sutton, A., & Abrams, K. (2001). Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10(4), 277.

    Article  CAS  PubMed  MATH  Google Scholar 

  • Trikalinos, T., Salanti, G., Zintzaras, E., Ioannidis, J. (2008). Meta-analysis methods. Advances in genetics, 60, 311–334.

    Article  PubMed  Google Scholar 

  • Voter, A.F. (1985). A monte carlo method for determining free-energy differences and transition state theory rate constants. The Journal of chemical physics, 82, 1890.

    Article  CAS  ADS  Google Scholar 

  • Wedel, M., & Pieters, R. (2000). Eye fixations on advertisements and memory for brands: a model and findings. Marketing Science, 19, 297–312.

    Article  Google Scholar 

  • Winkler, R.L., Smith, J.E., Fryback, D.G. (2002). The role of informative priors in zero-numerator problems: being conservative versus being candid. The American Statistician, 56(1), 1–4.

    Article  MathSciNet  Google Scholar 

  • Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y., Chen, Z. (2009). How much can behavioral targeting help online advertising? In Proceedings of the 18th international conference on World wide web (pp. 261–270). ACM.

  • Yildiz Tiryaki, G., & Akbay, C. (2010). Consumers fluid milk consumption behaviors in Turkey: an application of multinomial logit model. Quality & Quantity, 44(1), 87–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyuan Wang.

Additional information

We thank Organic, Inc. and the Wharton Customer Analytics Initiative for providing the data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Bradlow, E.T. & George, E.I. Meta-analyses using information reweighting: An application to online advertising. Quant Mark Econ 12, 209–233 (2014). https://doi.org/10.1007/s11129-014-9145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11129-014-9145-7

Keywords

JEL Classifications

Navigation