Skip to main content
Log in

Mutual authentication quantum key agreement protocol based on Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A mutual authentication quantum key agreement protocol can authenticate participants’ identities before establishing shared keys fairly. Therefore, it is more in line with the actual demand than the general quantum key agreement protocols. With Bell states and their entanglement exchange relations, a new mutual authentication quantum key agreement protocol is proposed. The participants can mutually authenticate each other’s identity by using their secret identity information and the measurement correlation property of Bell states. Moreover, they can negotiate session keys fairly with the entanglement exchange relations of Bell states. The new mutual authentication quantum key agreement protocol is proved to be unconditionally secure and has good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

All data supporting the findings of this study are available within the article.

References

  1. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International conference on computers, systems and signal Processing, Bangalore, India, pp. 175-179. (1984)

  4. He, Y.F., Ma, W.P.: The decoy-state measurement-device-independent quantum key distribution with heralded single-photon source. Int. J. Theor. Phys. 59, 908–917 (2020)

    Article  Google Scholar 

  5. He, Y.F., Ma, W.P.: The enhanced measurement-device-independent quantum key distribution with heralded pair coherent state. Mod. Phys. Lett. B 34, 2050063 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. He, Y.F., Ma, W.P.: Measurement-device-independent quantum key distribution protocols against collective noise. Mod. Phys. Lett. B 35, 2150195 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  ADS  Google Scholar 

  8. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information security conference (ISC 2004), pp. 236-242. National Taiwan University of Science and Technology, Taipei 10-11 June (2004)

  9. Tsai, C.W., Hwang, T.: On “quantum key agreement protocol.’’. Taiwan. R.O.C, Technical Report, C-S-I-E, NCKU (2009)

    Google Scholar 

  10. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and information security conference (CISC 2010), pp. 210-213. National Chiao Tung University, Hsinchu, 27-28 May (2010)

  11. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  12. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  Google Scholar 

  17. Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “Multiparty quantum key agreement with single particles.’’. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. He, Y.F., Ma, W.P.: Two quantum key agreement protocols immune to collective noise. Int. J. Theor. Phys. 56, 328–338 (2017)

    Article  MathSciNet  Google Scholar 

  23. Das, A., Nandi, S., Sazim, S., Agrawal, P.: Resource state structure for controlled quantum key distribution. Eur. Phys. J. D. 74, 91 (2020)

    Article  ADS  Google Scholar 

  24. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhu, H.F., Wang, C.N., Li, Z.X.: Semi-honest three-party mutual authentication quantum key agreement protocol based on GHZ-like state. Int. J. Theor. Phys. 60, 293–303 (2021)

    Article  MathSciNet  Google Scholar 

  26. Ma, X.Y., Hur, J.B., Li, Z.X., Zhu, H.F.: Quantum mutual authentication key agreement scheme using five-qubit entanglement towards different realm architecture. Int. J. Theor. Phys. 60, 1933–1948 (2021)

    Article  MathSciNet  Google Scholar 

  27. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  Google Scholar 

  28. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  29. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 372, 3333–3336 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, T.Y., Wang, X.X., Cai, X.Q., et al.: Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states. Quantum Inf. Process. 20, 7 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61802302) and the Basic Research Project of Natural Science of Shaanxi Province (Grant No. 2021JM-462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Feng He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YF., Pang, Y. & Di, M. Mutual authentication quantum key agreement protocol based on Bell states. Quantum Inf Process 21, 290 (2022). https://doi.org/10.1007/s11128-022-03640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03640-4

Keywords

Navigation