Skip to main content
Log in

Two-party secure semiquantum summation against the collective-dephasing noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a two-party semiquantum summation protocol, where two classical users can accomplish the summation of their private binary sequences with the assistance of a quantum semi-honest third party (TP). The term ‘semi-honest’ implies that TP cannot conspire with others but is able to implement all kinds of attacks. This protocol employs logical qubits as traveling particles to overcome the negative influence of collective–dephasing noise and need not make any two parties pre-share a random secret key. The security analysis turns out that this protocol can effectively prevent the outside attacks from Eve and the participant attacks from TP. Moreover, TP has no knowledge about the summation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article.

References

  1. Heinrich, S.: Quantum summation with an application to integration. J. Complex 18(1), 1–50 (2002)

    Article  MathSciNet  Google Scholar 

  2. Heinrich, S., Kwas, M., Wozniakowski, H.: Quantum Boolean summation with repetitions in the worst-average setting. 2003, http://arxiv.org/pdf/quant-ph/0311036

  3. Hillery, M., Ziman, M., Buzek, V., Bielikova, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 75–81 (2006)

    Article  ADS  Google Scholar 

  4. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Phys. Sin. 56(11), 6214–6219 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49(11), 2793–2804 (2010)

    Article  MathSciNet  Google Scholar 

  6. Zhang, C., Sun, Z.W., Huang, Y., Long, D.Y.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933–941 (2014)

    Article  Google Scholar 

  7. Gu, J., Hwang, T., Tsai, C.W.: Improving the security of ‘High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom.’ Int. J. Theor. Phys. 58, 2213–2217 (2019)

    Article  Google Scholar 

  8. Zhang, C., Sun, Z.W., Huang, X.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(2), 1550011 (2015)

    Article  MathSciNet  Google Scholar 

  9. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  10. Shi, R.H., Zhang, S.: Quantum solution to a class of two-party private summation problems. Quantum Inf. Process. 16(9), 225 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhang, C., Situ, H.Z., Huang, Q., Yang, P.: Multi-party quantum summation without a trusted third party based on single particles. Int. J. Quantum Inf. 15(2), 1750010 (2017)

    Article  MathSciNet  Google Scholar 

  12. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17(6), 129 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ji, Z.X., Zhang, H.G., Wang, H.Z., Wu, F.S., Jia, J.W., Wu, W.Q.: Quantum protocols for secure multi-party summation. Quantum Inf. Process. 18, 168 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Duan, M.Y.: Multi-party quantum summation within a d-level quantum system. Int. J. Theor. Phys. 59(5), 1638–1643 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ye, T.Y., Hu, J.L.: Quantum secure multiparty summation based on the mutually unbiased bases of d-level quantum systems and its application (in Chinese). Sci. Sin. Phys. Mech. Astron. 51(2), 020301 (2021)

    Article  Google Scholar 

  16. Ye, T.Y., Hu, J.L.: Quantum secure multiparty summation based on the phase shifting operation of d-level quantum system and its application. Int. J. Theor. Phys. 60(3), 819–827 (2021)

    Article  MathSciNet  Google Scholar 

  17. Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, (1984), 175–179

  18. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang, C., Huang, Q., Long, Y.X., Sun, Z.W.: Secure three-party semi-quantum summation using single photons. Int. J. Theor. Phys. 60, 3478–3487 (2021)

    Article  Google Scholar 

  21. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  22. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  23. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A 361, 233–238 (2006)

    Article  ADS  Google Scholar 

  24. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283, 3099–3103 (2010)

    Article  ADS  Google Scholar 

  25. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhang, M.H., Li, H.F., Peng, J.Y., Feng, X.Y.: Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel. Int. J. Theor. Phys. 56, 2659–2670 (2017)

    Article  Google Scholar 

  27. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  29. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  30. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. (2005), http://arxiv.org/pdf/quant-ph/0508168.pdf

  31. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  32. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  34. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. (2016), https://arxiv.org/abs/1607.07961

  35. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2018)

    Article  MathSciNet  Google Scholar 

  36. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  37. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhou, N.R., Xu, Q.D., Du, N.S., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process. 20, 124 (2021)

    Article  MathSciNet  Google Scholar 

  39. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59(3), 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  41. Li, H.H., Gong, L.H., Zhou, N.R.: New semi-quantum key agreement protocol based on high-dimensional single-particle states. Chin. Phys. B 29(11), 10304 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant No.62071430), the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. JRK21002) and Zhejiang Gongshang University, Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (No.2013E10012) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY., Xu, TJ., Geng, MJ. et al. Two-party secure semiquantum summation against the collective-dephasing noise. Quantum Inf Process 21, 118 (2022). https://doi.org/10.1007/s11128-022-03459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03459-z

Keywords

Navigation